


Chemistry 1

Gampaha, Rathnavah Balika Vedvolaya - Gempaha, Rathuavah Balika Velyalaya

Answer all the questions.

Avogadro constant

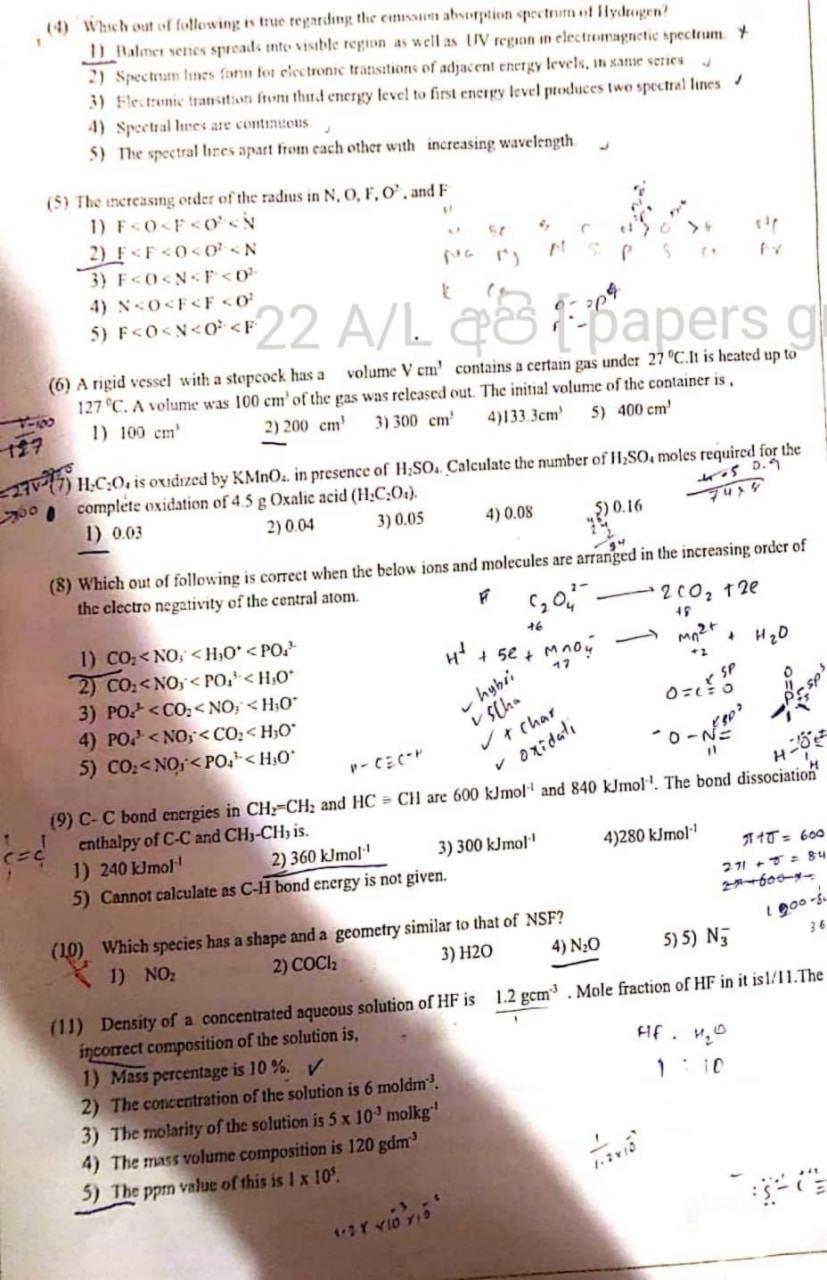
NA= 6.022×10<sup>23</sup> mol<sup>-1</sup>

Planck constant

 $h = 6.626 \times 10^{-34} \text{ mol}^{-1}$ 

Universal gas constant

R = 8.314 Nm K-1 mol-1


Speed of light

 $C = 3 \times 10^8 \text{ ms}^{-1}$ 

- (1) Some concepts of atomic structure are mentioned below.
  - a) Matter consists positive charges.
  - Radioactive substances emit α, β, and γ radiation .
  - c) The mass of the atom has been gathered at the Centre of it.

The scientists who have a close relation ship with the above ideas is given in,

- Rutherford, Henry Becquerel, Niels Bohr.
- 2) Marsden, Henry Becquerel, Rutherford.
- Thompson, Rutherford, Niels Bohr.
- Goldstein, Rutherford, Rutherford.
- 5) Goldstein, Henry Becquerel Rutherford.
- (2) Which out of following is true regarding isotopes and nuclide?
  - Different nuclides of same element are called isotopes.
  - Atoms and ions of the same element are different nuclides.
  - Different elements has same nuclides. y
  - The isotopes and nuclides of same element have similar chemical properties.
  - 5) The only difference between isotopes and nuclides is the number of nucleons.
- (3) Which out of following is not true regarding cathode rays?
  - 1) Occur due to the ionization of gaseous atoms.
  - Gaseous positive ions also can produce cathode rays.
  - 3) The deviation of cathode rays in electric field doesn't depend on strength of electric fields. X
  - Cathode rays give evidences for dual nature of electrons.
  - 5) The charge of the cathode rays can be gained by the deviation in magnetic fields.



(12) The increasing order of the O-N bond angle of NO2, NO2, NO2 and NO4 is

1) 
$$NO_2 < NO_2 < NO_2 < NO_2 < NO_3 = NO_3$$

2) 
$$NO_2 = NO_2^- < NO_4^{3-} < NO_2^+$$

3) 
$$NO_2 = NO_2^- < NO_2^+ < NO_3^-$$

4) 
$$N0_4^{3-} < N0_2^{-} < N0 < N0_2^{+}$$

5) 
$$NO_4^{3-} < NO_2^- < NO_2 < NO_2^+$$

(13) Four enthalpy changes relevant to the formation of NO<sub>2</sub> (g) is mentioned below.

$${}^{1}/_{2}N_{2(g)} + {}^{1}/_{2}O_{2(g)} \longrightarrow {}^{1}NO_{(g)} - (A)$$

$$N_{(g)} + O_{(g)} \longrightarrow NO_{(g)}$$
 (B)

$$^{1}/_{2}N_{2(g)} + O_{(g)} \longrightarrow NO_{(g)}$$
 (C)

$$N_{9(g)} + \frac{1}{2}O_{2(g)} \longrightarrow NO_{(g)}$$
 (D)

The ascending order of the amount of enthalpy changes is,

$$4) A = B = C = D$$

(14) The density ratio between A2 and B2 is 2:1 when A2 and B2 gasses are stored under 27 °C with pressure fatio 50:1. The correct statement regarding these two gas samples is .

The ratio between square mean velocities of A and B is 5:1.

The mean velocity cannot be calculated as the molar masses of gasses are not given.

The ratio between the mean speeds of A and B is \$\frac{1}{2}\$.

The velocities are equal as the gasses remain under the same temperature.

The ratio between mean kinetic energies is \$5: 1.

Which out of following has not given the correct valency and oxidation number of the central atom?

|    | lon                | Valency | Oxidation |  |
|----|--------------------|---------|-----------|--|
| 1  | SCN-               | 4       | +4.       |  |
| 2  | AIO <sub>2</sub> - | 3       | +3        |  |
| 3  | H <sub>3</sub> O*  | 4       | -2        |  |
| 4  | IO <sub>3</sub> ·  | 5       | +5        |  |
| 5, | NO <sub>3</sub> -  | 4       | +5        |  |

(16) Below equation shows the dimerization of NO<sub>2</sub> molecule.

Which out of following is the most accurate statement?

- 1) The forward reaction is endothermic.
- The forward reaction is exothermic.
- The forward reaction is exothermic.
- 4) In backward reaction chemical energy converts into thermal energy
- In backward reaction thermal energy converts into chemical energy

| The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                           | the To                                            |                                             |                                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------|-------|
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The correct sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tement for an enth                 | alpy changes of a reac                                                                                    | tion is                                           | /.                                          |                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e under constant v                 |                                                                                                           | . /                                               |                                             |                                   |       |
| 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The heat chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e under constant [                 | oressure."                                                                                                | V                                                 |                                             |                                   |       |
| _3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The heat chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e under the stand                  | ard state. * action which takes pla                                                                       | ce according to th                                | e stoichiometr                              | ic ratio.                         |       |
| 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The heat chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e of a chemical re                 | action which takes pla<br>action which takes pla                                                          | ice under atmosph                                 | eric pressure.                              |                                   | 1     |
| - 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The heat chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e of a chemical re                 | action water                                                                                              |                                                   |                                             |                                   | 3.    |
| . (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flools in the me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | scence of phenoi                   | mol dm <sup>-3</sup> H <sub>2</sub> SO <sub>4</sub> is u<br>phthalein. What is th<br>the titration flask? |                                                   |                                             |                                   | -     |
| (4) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1) 10 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 2) 20 cm <sup>3</sup>                                                                                     | 3) 40 cm <sup>3</sup>                             | 4) 45 cm                                    | 5) 50 cm <sup>3</sup>             | 100   |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                           | -A.C.                                             | 7)-                                         |                                   | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | nd H <sub>2</sub> O is a liquid at                                                                        | room temperature                                  | . The false state                           | ement regarding                   | 170   |
| 736 (19) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 is a solid at ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | om temperature a                   | nd H <sub>2</sub> O is a riquid as                                                                        | room comp                                         |                                             |                                   |       |
| \$ " ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he v intermolec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                           |                                                   | •                                           |                                   |       |
| (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Induced dipole-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | induced dipole i                   | nteraction occur betw                                                                                     | een water molecu                                  | iles. 🗡                                     | 7                                 |       |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>2</sub> has London f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | orces only                         |                                                                                                           | lamber is hig                                     | her than that in                            | water.                            |       |
| 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Strength of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | intermolecular in                  | teractions between I2                                                                                     | morecules is ing                                  | ules are copied                             |                                   |       |
| . 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | There is no effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ect to the interm                  | olecular forces even                                                                                      | mough the more                                    |                                             |                                   | 1     |
| 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The boiling poi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt l2 is lower th                  | an that of H <sub>2</sub> O.                                                                              |                                                   | \/                                          | y I                               |       |
| (20) The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ingressing ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er of the energy                   | emitted in gaining                                                                                        | electron is,                                      |                                             |                                   |       |
| . (20) 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | moreasing ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er en me energy                    |                                                                                                           |                                                   | < CL < O < N                                |                                   |       |
| 1) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N < O < F < Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 2) N < O < C1 < F                                                                                         | 3) F                                              | CCTCO                                       |                                   |       |
| 4) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N < C1 < 0 < F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 5) N < O < F < Cl                                                                                         |                                                   | 6/                                          |                                   | .     |
| (21) KSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in himbon them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | that of ( ) The IT                 | ne presence of H <sub>2</sub> SO.<br>nolar ratio of CO <sub>2</sub> : N                                   | and forms CO <sub>2</sub> ,<br>2: S in a balanced | S, N <sub>2</sub> . (The ele<br>equation is | ectronegativity of                |       |
| 1) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :1:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) MAN 1-1:                        | ν 3) 2:2:1                                                                                                | 4) 5                                              | 5:2:5 5                                     | 2:3:2                             |       |
| gas em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | em³ volume of control of the control of cont | of gaseous hydro<br>ed through KOI | ecarbon was burnt m<br>I solution and the ve                                                              | nume reduction                                    | was 40 cm .                                 |                                   | 16    |
| If a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all volumes w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vere measured                      | under room tempe                                                                                          | rature and press                                  | sure, the mol-                              | ecular formula o                  | f the |
| 1) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2) C <sub>4</sub> H <sub>8</sub>   | 3) C <sub>4</sub> H <sub>10</sub>                                                                         | 4)                                                | C <sub>4</sub> H <sub>6</sub>               | 5) C <sub>8</sub> H <sub>14</sub> | 1     |
| 1) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,011.                             |                                                                                                           | _                                                 |                                             |                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e e                                | legule to be                                                                                              | nolar is                                          |                                             |                                   |       |
| (23) The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | most required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | factor for an io                   | n or molecule to be                                                                                       | point is,                                         |                                             | = 10 of 1                         |       |
| 1) Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esence of ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oms of different                   | elements.                                                                                                 | 8 41 + 5                                          | ie i Wuong                                  | - Mn" +                           | 4 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | one pairs on the                   |                                                                                                           |                                                   | 47                                          | 7.                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | n the central atom.                                                                                       |                                                   |                                             |                                   |       |
| 4) Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wing differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t shape and elec                   | tron pair geometry                                                                                        | around the cent                                   | ral atom.                                   |                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esence of pola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | ٠,                                                                                                        |                                                   |                                             |                                   | la .  |
| 3) PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esence of por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Colladi                          |                                                                                                           |                                                   | 2 SCN -                                     | 7 2002 123                        | 1 172 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N>                                 | (0, + 9                                                                                                   | f N <sub>2</sub>                                  | 7 7 7 . 1                                   | 2002 125                          | 0     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma \wedge \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /1 8                               | 8 [ p                                                                                                     | ane                                               | IS C                                        | TOL                               | p]    |

ALJZUZZUUZEJI

| (24) A method has been pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| (24) A method has been proposed to produce CHL  CO(g) + 3H <sub>2</sub> (g) CH <sub>4</sub> (g) + H <sub>2</sub> Standard enthalpies of formulae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gas from CO (g) emitted by an engine.                                      |
| Standard enthalming 52 14(g) + H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(z)                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| describent regarding this reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nie.                                                                       |
| 2) The enthalpy change of the reaction is - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 KJmol 1 V                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| Formation of H <sub>2</sub> (g) by reacting CH <sub>4</sub> (g) at     Only the emission of heat is taken place     The enthalpy change of CH <sub>4</sub> (a) at the control of the c | nd H <sub>2</sub> O(1) is endothermic                                      |
| 5) The enthalpy change of CH <sub>4(g)</sub> + H <sub>2</sub> O (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in this reaction                                                           |
| 120 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| (25) The mass percentage of CO2 is 44% in a min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xture containing CO <sub>2</sub> (g) and CO (g) only. (C=12, O=16)         |
| The false statement for the mixture is,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | State containing CO <sub>2</sub> (g) and CO (g) only. (C=12, O=16)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 : 56<br>75                                                              |
| 1) The mole fraction of CO <sub>2</sub> gas is 1/3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 = 2                                                                      |
| 2) The volume percentage of CO <sub>2 gas</sub> is 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % ×                                                                        |
| The volume of the gas under the standar     The mass percentage, and volume percentage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d temperature and pressure is 67.2 dm <sup>3</sup>                         |
| <ol> <li>The mass percentage and volume percentage of C is 36 % in this m</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | intage of CO2 are different in this mixture                                |
| , g a s a s o s s in una in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ixture $\frac{V_M}{50} = \frac{0.5}{200}$ $\frac{9}{4} \cdot \frac{1}{20}$ |
| a (26) A mass of 50 cm <sup>3</sup> of V <sub>2</sub> mas is 1 a under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 200                                                                     |
| under the same conditions of temperature as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | standard pressure and temperature. Mass of 200 cm <sup>3</sup> of Ne gas   |
| What is he relative atomic mass of X?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 0.025                                                                   |
| What is he telative atomic mass of A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
| 1) 20 2) 40 3) 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4) 160 5) 100                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Xz                                                                         |
| (27) The Lewis structure of N2O2 molecule is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 725                                                                      |
| 0 0 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · N-0: € 0=N-N-0:                                                          |
| O = N - N = O The number of other Lewis structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | that can be drawn is                                                       |
| The number of other Lewis structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                      |
| 1) 2 2) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3) 4 4) 5 5) 6                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAA mas is                                                                 |
| (28) True statement regarding the root mean s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | equare speed of a gas is,                                                  |
| 1) Doubled when temperature of the gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is doubled. $\sqrt{\overline{C^2}} = \sqrt{\frac{3}{1000}}$                |
| 2) Doubled when pressure of the gas is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | doubled. +                                                                 |
| 2) Doubled when pressure of the goubled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.X                                                                        |
| 3) Become half when density is doubled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J m                                                                        |
| 4) Become half when volume is doubled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | when the temperature reduced to half.                                      |
| Become half when volume is doubted     Mean square velocity becomes half velocity belocity becomes half velocity becomes half velocity becomes half v                                | when the temperature                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| (29) According to the standard nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, name of 1120 meters monoxide                                            |
| 1) hydrogen oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z) nydrogon                                                                |
| Thydrogen oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) water                                                                   |
| 3) dihydrogen oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |
| 5) dihydrogen monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| # 00 A /1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mes nonore are                                                             |
| // A/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |

Kathnavan



(30) The molar mass of Mohar salt (NH<sub>4</sub>)<sub>2</sub>Fe (SO<sub>4</sub>)<sub>2</sub> .6H<sub>2</sub>O is 392 gmol<sub>1</sub>. The mass of Fe (NO<sub>3</sub>)<sub>2</sub> which contains the same number of total ions in 7,84 g of above salt.,

1) 0.9 kg 3 9

2) 540-g

3) 9g

4) 54g

5) 18g

For the questions 31 to 40, one or more responses out of the four responses (a), (b), (b) and (d) is/are correct. Select the correct response/responses. In accordance with the instruction given on your answer sheet, mark

1) If only (a) and (b) are correct

2) If only (b) and (c) are correct

, (NHW), Fe (504) , 6H20

If only (c) and (d) are correct

4) If only (a) and (d) are correct

If any other number or combination is correct

| (1)              | (2)              | (3)              | (4)                  | (5)                    |
|------------------|------------------|------------------|----------------------|------------------------|
| only (a) and (b) | only (b) and (c) | only (c) and (d) | only (a) and (d) are | any other number or    |
| are correct      | are correct      | are correct      | correct              | combination is correct |

31) The true statement/statements regarding the atomic spectrum of hydrogen is/are,

(a) The departure of spectral lines with wavelength in Lyman series is corresponding with the departure of energy levels in an atom.

(b) When the energy difference of closer electronic transitions decreases in Balmer series, the frequency of spectral lines increases.

(c) The electron transition from higher energy levels to lower energy levels has negative energy change,  $\Delta H < 0$ .

(d) Departure of spectral lines in a spectrum can be described by using quantum theory only.

 The most accurate statement/statements about the Ozone (O<sub>3</sub>) molecule is/arc, 10.010

(a) The atoms have different oxidation states

(b) O – O bond lengths are not equal

(c) O can use this structure to illustrate the molecule. :0: :0:

(d) The dipole moment of the molecule is not equal to zero.

33) The correct statement regarding acid-base titration is/are,

(a) The equivalence point and the end point are the same ★

(b) The unknown solution is always added to the flask ✓

(c) Strong acids should be used to titrate weak bases in the presence of an indicator

(d) A neutralization reaction takes place in between acetic acid and ammonia.

34) Complete combustion of liquid ethanol forms CO2 (g) and H2O(l) under 25°C and 1 atm pressure (C2H5OH [ $\Delta Hc \theta$  - 1400 kJmol-1). The true statement/s regarding relevant enthalpy change of this reaction C, H, OH -> 2(0: +3 H20

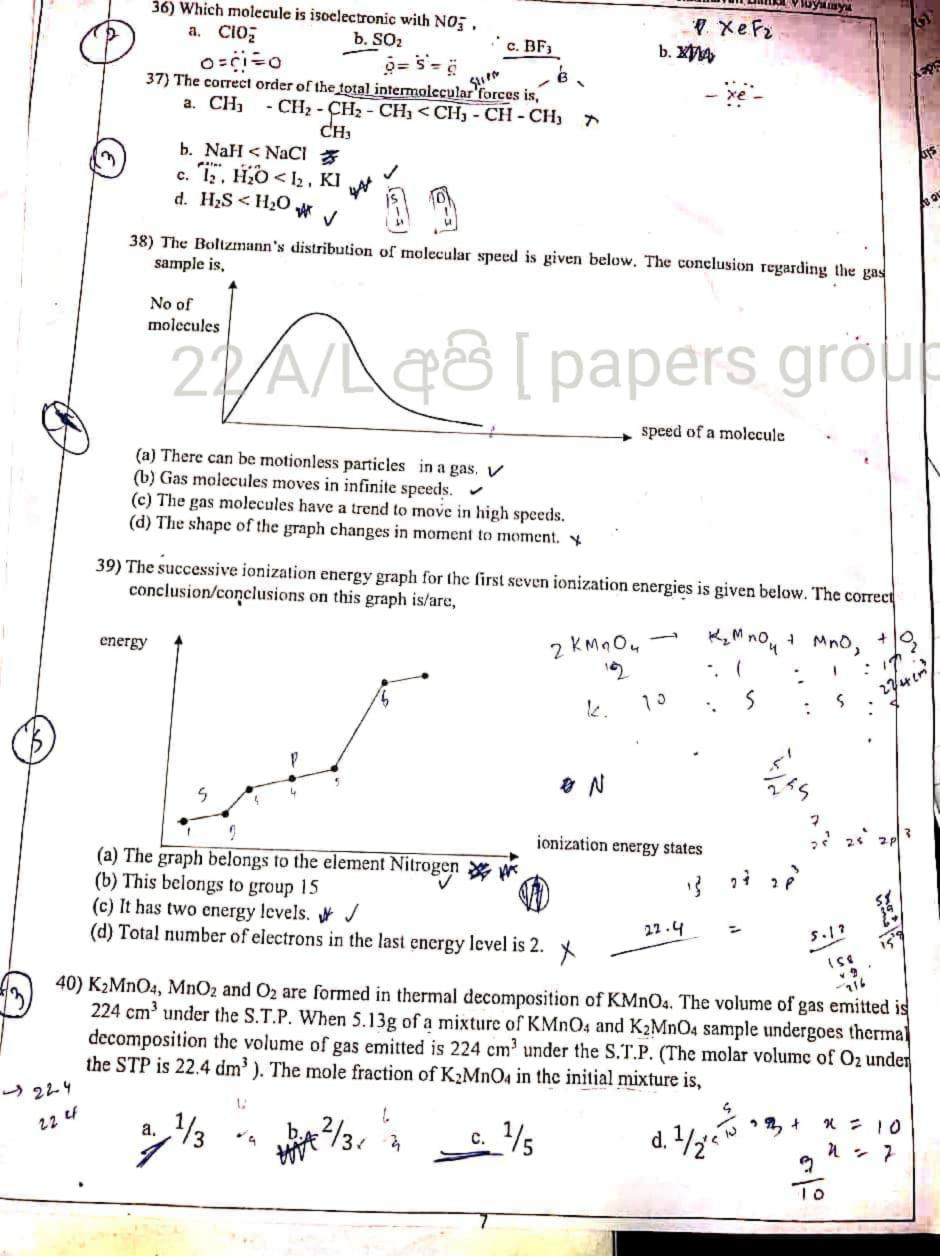
(a) This related to the standard enthalpy of combustion of ethanol 🗸

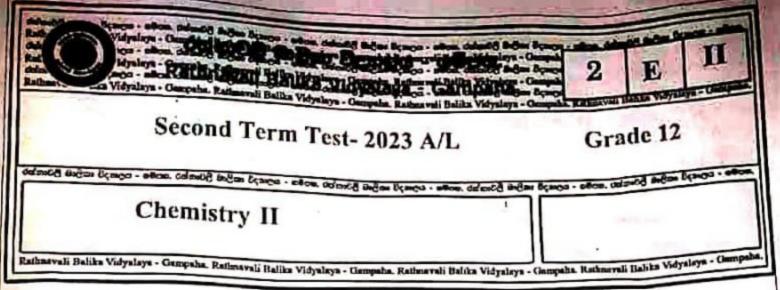
(b) When H<sub>2</sub>O(g) forms, the enthalpy change becomes relatively higher. ✓

(c) During the combustion of ethanol, an amount of 1400KJ mol⁻¹ is emitted.

(d) When H2O(g) forms, the enthalphy change becomes relatively higher /

35) When ideal gas equation is used on a real gas, below corrections should be done.


$$\left(P + \frac{n^2a}{V^2}\right)(V - nb) = nRT$$


The correct statement/s regarding this equation is/are, (a) "a" depends on intermolecular forces and "b" depends on volume of the molecule

(b) The volume of an ideal gas is the volume of the container \( \sqrt{} \)

(c) The above equation cannot be used for an ideal gas ★

(d) For the gasses NH3 and CH4 the value of "a" is NH3 > CH4 and value of "b" is NH3 < CH4





## Essay

Answer 2 questions from part B and 2 questions from part C.

## Part B

(05) a) i. a) An amount of 5.97 g of a mixture of solid sample of  $BaCO_3$  and  $CaCO_3$  was heated in extremely high-temperature and 3.77 g of solid residue was remained. Calculate the molar fraction of  $CaCO_3$ .

$$BaCO_{3(s)}$$
  $\xrightarrow{\Delta}$   $BaO_{(s)} + CO_{2(g)}$   
 $CaCO_{3(s)}$   $\xrightarrow{\Delta}$   $CaO_{(s)} + CO_{2(g)}$   
 $(Ba = 137, \quad Ca = 40, \quad C = 12, \quad O = 16)$ 

- b) Certain organic compounds with 198 of relative of molecular mass has 36.36% C, 28.28% of N and 32.32% of O in the percentage of mass. State the molecular formula. (C = 12, H = 1, N = 14, 0 = 16)
- A solid mixture of Al and Fe with  $H_2S$  in high temperature.

$$Al \longrightarrow Al_2S_3$$
  
Fe  $\longrightarrow FeS$ 

(Reaction should be balanced. When 1.1 g of solid sample was heated with  $H_2S_{(g)}$  and 2.38 g of constant mass was obtained.) [Al = 27, 5 = 32, Fe = 56]

- Calculate the mole fraction of Al at the initial solid mixture.
- ii. Calculate the mole fraction of FeS in final solid mixture.
- iii. Calculate the  $H_{2\,(g)}$  volume generated in standard pressure and temperature.
- (06) a) (a) A commercial H<sub>2</sub>SO<sub>4</sub> sample with unknown concentration has being labeled as 'Specific gravity' 1.47 (density 1.47 gcm<sup>-3</sup>). 10 cm<sup>3</sup> volume of a the initial sample was placed in to 100cm<sup>3</sup> volumetric flask and diluted with H<sub>2</sub>O<sub>(l)</sub> up to the mark. When 75 cm<sup>3</sup> volume of 1 moldm<sup>-3</sup> NaOH solution was added to 25cm<sup>3</sup> of above diluted solution. When phenolphthalein is added to final solution, the solution was converted in to red.

This solution was titrated with  $1 \, moldm^{-3} \, HCl$  and the volume of HCl required to reach the end point was  $37.5 \, cm^3$ .

i. Calculate the concentration of commercial  $H_2SO_4$  sample.

- Calculate the percentage of purity in  $H_2SO_4$  sample.
- b) Two samples of same solution were separately checked to 'calculate the concentration of Fe2+  $\int$  and  $Fe^{3+}$  ion by using two separate 25.00 cm<sup>3</sup> of the sample.

Test  $1:-10\ cm^3$  of  $0.01\ moldm^{-3}$  KMnO<sub>4</sub> solution was spent, until purple colour (dark colour) solution was obtained

- Test 2:-Excess Ki solution was added to second sample and then 20 cm3 of 0.01 moldm-3 of  $Na_2S_2O_3$  solution was spent with starch indicator
  - i. Write the balanced ionic equation for the  $MnO_4^-$  ,  $Fe^{\,2+}$  reaction.
  - ii. Write the balanced ionic equation for the  $I^-$ ,  $Fe^{3+}$  reaction.

  - iv. Identify the colour change of second titration.
  - v. At the end of the second experiment the final solution was titrated with KMnO4. Calculate the burette reading.
- (07) a) Two large closed, glass, gas containers with  $10 m^3$  and  $20 m^3$  have been separated by a thin tube with a stopcock of which the volume nelegible.
  - $\rightarrow$  First container contains  $N_{2(g)}$  with  $1 \times 10^5$  Nm  $^{-2}$  pressure in  $27^{\circ}c$ .
  - $\rightarrow$  Second container  $H_2$  with  $1 \times 10^5$  Nm  $^{-3}$  Pressure in  $127^{\circ}c$ .

The system was kept with initial temperature, although gases were mixed by opening the tap.

- i. Calculate the number of  $N_{2(g)}$  moles. (RT = 2500 Nmmol<sup>-1</sup> at 27°C)
- ii. Calculate the number of  $H_{2(g)}$  moles. (RT = 10000/3 Nmmol<sup>-1</sup> at 127°C)
- iii. The total number of gas moles and number of moles of each gas after mixing in 20m3 bulb when tap opened.
- iv. Total pressure of final system
- v. The temperature of the final system was increased by 600 K by adding catalyst X.  $N_{2(g)}$  and  $H_{2(g)}$  reaction was completely occurred and converted to NH<sub>3(g)</sub>. Calculate the partial pressure of each gas in the system.
- b) i. By using ideal gas law and kinetic molecular equation, Derive an equation for the relationship the atoms of the gas. between mean velocity and absolute temperature of
  - ii. If A sample of  $H_{2(g)}$  is in  $127^{\circ}C$  temperature and  $10dm^3$  volume calculate the mean velocity of  $H_{2(q)}$ atom.
  - iii. Logically calculate the velocity of  $Ne_{(g)}$  atom at same temperature. (Ne =20)
  - iv. Draw a graph on the mean velocity of  $H_{2(g)}$  and  $Ne_{(g)}$  sample using the Maxwell-boltz-mann distribution of speeds.
- c) The pressure of He is double respective to the pressure of  $O_2$ , in a same system where only  $O_{2(g)}$ and  $He_{(g)}$  remain. The volume of the system is  $8.314dm^3$  and the total pressure is  $4.5 \times$  $10^5 Nm^{-2}$  with  $27^0C$  temperature.
  - 1. When the system was heated by inserting a Mg strip,  $O_2$  gas was totally removed form the system by forming Mg0.
- What is the total pressure of the system. (The final temperature of the system is in 27°C) i. ii.

## Part C

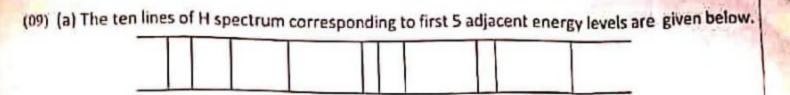
- (08) a)l. State the relationship between heat change and enthalpy change of a reaction.
  - 11.5g mass of liquid ethanol(C<sub>5</sub>H<sub>5</sub>OH) has completly burned with execess O<sub>2</sub> in closed rigid system. The temperature of the system has been increased by 25°C. (the heat capacity of the system is 15kJK<sup>-1</sup>)
     (C = 12, O = 16, H = 1)
  - i. Write the balanced equation for the combustion of liquid ethanol.
  - ii. Calculate the enthalpy change of above reaction by using given datas.
  - iii. Calculate the standard enthalpy of combustion for Ethanol with a Thermo-chemical cycle by I. using below datas.

$$\Delta HF_f^{\emptyset}[CO_{2(g)}] = -395 \text{ kJmol}^{-1}$$
  
 $\Delta HF_f^{\emptyset}[H_2O_{(l)}] = -286 \text{ kJmol}^{-1}$   
 $\Delta HF_f^{\emptyset}[C_2H_5OH_{(l)}] = -148 \text{ kJmol}^{-1}$ 

c)

- II. State whether the amount of enthalpy change of experimental value and calculated value is equal or not? Discuss the theoretical and practical reason that.
- 22 A/L ਕੁਲੇ [papers group
- i. Write the equation for the below statements.
  - (a) The standard enthalpy of combustion of  $C_2H_{2(g)}$ .
  - (b) The standard enthalpy of formation of  $C_6H_{6(l)}$
- Some thermo chemical data of on some given thermo chemical reactions are mentioned below.

$$\Delta H_{f(CO_{2}(g))}^{\theta} \longrightarrow -393 \ KJmol^{-1} ,$$


$$\Delta H_{f(H_{2}O(l))}^{\theta} \longrightarrow -286 \ KJmol^{-1} ,$$

$$\Delta H_{c(C_{2}H_{2}(g))}^{\theta} \longrightarrow -1300 \ KJmol^{-1} ,$$

$$\Delta H_{c(C_{6}H_{6}(g))}^{\theta} \longrightarrow -3265 \ KJmol^{-1} ,$$

By using above data, calculate the enthalpy changes by only using enthalpy level diagramme.

(a) 
$$3C_2H_{2(g)} \longrightarrow C_6H_{6(l)} \Delta H_1^{\theta}$$
  
(b)  $2C_{(s,gr)} + {}_2^1H_{2(g)} \longrightarrow C_2H_{2(g)} \Delta H_2^{\theta}$   
(c)  $2C_{(s,gr)} + 3H_{2(g)} \longrightarrow C_6H_{6(l)} \Delta H_3^{\theta}$ 



- i. Consider the lines of Lymann series as  $X_1, X_2, \dots$  diagramme in order, lines of Bahmer series as  $Y_1, Y_2, \dots$  and lines of Paschen as  $Z_1, Z_2, \dots$  Order and lines of Bracket as  $M_1, M_2, \dots$  In order and pfund as  $N_1, N_2, \dots$  mark only the lines corresponding to first 5 energy levels in your diagram. (show the energy increasing direction by using->)
- ii. Draw the electronic transitions relevant to x1, x2 y2, Z1 lines in a energy level diagramme.
- iii. If four adjacent lines of the Bahmer series have 656 nm, 456 nm, 434 nm and 410 nm, Calculate the energy of a photon in  $y_2(h=6.63\times10^{-34})$ s,  $c=3\times108$  ms<sup>-1</sup>)
- iv. Calculate energy of 1mol relevent to y2.(L = 6.022 ×10<sup>23</sup> mol 1)
- v. The energies of adjecement energy levels of H atom are E1, E2, E. The energy of an energy level can be calculated by  $E_n = \frac{2,17 \times 10^{19}}{n^2}$  (n = main quantum number) Calculate the energy for x1 radiation in Lyman series.
- (c) i. Below equation is used to calculate the formal charge on an atom in a molecule or poly atomic ion.

FC = the number of valence shell 
$$-\left[\left(\text{no of bonds+} \begin{array}{c} \text{no of elections} \\ \text{in lone pair} \end{array}\right)\right]$$

Calculate the formal charge on s atom in below molecules

a.  $H_2S$  b.  $SO_3^{2-}$ 

Oxidation number is used to determine the number of electrons Transfered among the ii. atoms. Determine the oxidation number of below molecules

a.  $H_2S$ 

b. SO3-

c. SO4-

- Although according to payling scale, the electro + negativity of an element is a constant, iii. it can be vary with the environment. What are the factors affecting to the electro negativity of an atom.
- iv. Deduce the deviation of the electro negativity of S atoms in  $H_2S$ ,  $SO_3^{2-}$  and  $SO_4^{2-}$ .
- (c) XY is diatomic molecule and the electro negativity of X is less than electro negativity of Y. ( Xx <  $X_Y$ ) XY atom can be written as X-Y and below equation denote the internuclear distance ( d  $_{xy}$  ) of X and Y atoms.

$$d_{x-y} = r_x + r_y - c(x_y - x_x)$$

r = atomic radius c = 9 pm

- Answer below questions based on above information.
- ١. What is the name used to identify the  $\sigma$  bonds between X and Y?
- Illustrate the fractional charge distributed (using  $\delta^+$  and  $\delta^-$ ) of the XY molecule. i.
- Write the equation used calculate the dipole moment (a) and mark the direction. ii. iii.

 Calculate the percentage of ionic nature of K – CI bond in KCI molecule using data given below...

Atomic radius of  $K(r_k) = 280.0 \text{ pm}$ 

Atomic radius of  $CI(r_{CI}) = 175.0 \text{ pm}$ 

Electro negativity of  $X_K = 0.8$ 

Electro negativity of  $X_{ci} = 3.0$ 

Dipole momentum of KCI =  $3.34 \times 10^{-29}$  cm

Charge of the electron =  $1.6 \times 10^{-19} C$ 

19

(10) a) Below data are based on an experiment to determine the percentage of Na<sub>2</sub>SO<sub>4</sub> and NaCl salts in a medicinal drug.

A solution is prepared by dissolving 4g of the medicine in  $25cm^3$  of water and treated with  $BaCl_{2(aq)}$  solution and all  $SO_4^{2-}$  ion were precipitated as  $BaSO_4$ . The dry mass received was 4.66 g.

Another 4 g sample of the medicine was dissolved in  $25cm^3$  of water and treated with Dilute  $Pb(NO_3)_2$  and all  $Cl^-$  and  $SO_4^{2-}$  ions were precipitated as  $PbCl_2$  and  $PbSO_4$ . The dry mass received was 7.44 g (Ba - 137, S -32, O -16, Na -23)

- i. Write the balanced equation for the above processes.
- Calculate the Na<sub>2</sub>SO<sub>4</sub> mass in 4.00 g of the medicine.
- iii. Calculate the NaCl mass in 4.00 g of medicine.
- b) An experiment was designed to calculate the  $CaCO_3$  mass percentage of a sea shell sample. A mass of 3 g was totally dissolved in  $25cm^3$  of HCl sample. Then it was diluted until 100 cm<sup>3</sup> and  $25cm^3$  of that was titrated with  $0.5 \ moldm^{-3}$  NaOH solution with phenolphthalein indicator. The mean burette reading is 12.7 cm<sup>3</sup> (Ca -40, C -12, O-16, Pb -207, Cl -35.5)
  - Write the balanced chemical equation for the reactions between CaCO<sub>3</sub> and HCI
  - ii. Number of HCl mols reacted with NaOH in titration.
  - Number of CaCO<sub>3</sub> reacted with HCl acid.
  - iv. State colour change obtain in the end point of the titration.
  - v. CaCO<sub>3</sub> mass percentage in sea shell sample.
- c) The volume composition of commercial  $H_2O_2$  bottle label has mentioned as 1:X . It means in S.T.P.  $xcm^3$  of  $O_{2(g)}$  is liberated by dissociating  $1cm^3$ .

  Of relevant solution.

An amount of  $5cm^3$  of  $H_2O_2$  was mixed with excess KI. The liberated  $I_2$  was titrated with  $Na_2S_2O_3$  solution is  $1\ moldm^3$  and the burette reading at the end point was  $18cm^3$ 

- I. State the balanced chemical equation for below reactions.
  - i. Reaction between  $H_2O_2$  and KI

- ii. Reaction between  $Na_2S_2O_3$  and KI
- iii. Dissociation of  $H_2O_2$
- II. Calculate the number of moles liberated as  $I_2$ .
- III. Molar concentration of  $H_2O_2$  solution.
- IV. Calculate volume composition of  $H_2 O_2$  solution. (consider the molar volume of  $O_2$  in S.T.P. is 22.4  $dm^3$ )
- V. The  $Na_2S_2O_3$  titration should be done as soon as possible when  $H_2O_2$  and KI solutions are mixed together "Do you agree with this" Discuss the reason.

## 22 A/L අපි [ papers group ]

| Н       |    | _   | PI | ERI | OD | IC | TA | BL | E  | )F | EL | EM       | EN | TS      |    |     | He |
|---------|----|-----|----|-----|----|----|----|----|----|----|----|----------|----|---------|----|-----|----|
| ,<br>Li | Be | 2   |    |     |    |    |    |    |    |    |    | ,<br>B   | 'c | N       | 0  | F   | Ne |
| Na      | M  | 1   |    |     |    |    |    |    |    |    |    | A!       | Si | P       | s  | "CI | Ar |
| K       | Ca | Sc  | -  | v   | Cr | Mn | Fo | Co | NI | Cu | Zn | Ga       | Ge | a<br>As | Se | Br  | Kr |
| Rb      | Sr | Y   | Zr | ИP  | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In       | Sn | Sb      | Te | 51  | Хe |
| Cs      | Ba | La  | HI | Ta  | W  | Re | Os | Ir | PI | Au | Hg | TI       | Pb | Bi      | Po | AI  | Rn |
| Fr      | Ra | Ac. | RI | Db  | Sg | Bh | H5 | Mt | Ds | Fg | Cn | ns<br>Nh | FI | Mo      | Ly | Ts  | Og |

| 1 | Ce | Pr | Nd | Pm       | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Υb | Lu |
|---|----|----|----|----------|----|----|----|----|----|----|----|----|----|----|
|   | Th | Pa | U  | re<br>qV | Pu | Am | Cm | Bk | Cſ | Es | Fm | Md | No | Lr |

man in H. lot op . To prove the