Grade 13

Visakha Vidyalaya - Colombo 05 Final Term Test -2024 October Combined Mathematics 1

EARS GROUP

(11) (a) Show that the equation $kx^2 + 2x + k = 0$ has real and distinct roots when 0 < k < 1.

Let above roots be α and β ($<\alpha$) prove that both roots are negative.

Find the value of $(1+\alpha)$ $(1+\beta)$ in terms of k and hence deduce that -1 < k < 0 and $\beta < -1$.

Show that $|1 + \alpha| + |1 + \beta| = \frac{2}{k} \sqrt{1 + k^2}$.

Show also that the quadratic equation with roots $|1+\alpha|$ and $|1+\beta|$ is

$$kx^2 - 2\sqrt{1 + k^2}x + 2(1 - k) = 0.$$

- (b) f(x) is a polynomial of degree 2 or more. Show that (x − r)² is a factor of f(x) if and only if f(r) = f'(r) = 0(r ∈ R).
 - (i) let $g(x) = x^3 + ax^2 + bx + c$. If a, b, c are real constants and $a^2 < 3b$, show that $(x r)^2$ is not a factor of g(x).
 - (ii) Let $h(x) = x^3 3x + k$ where k is a real constant. When $(x r)^2$ is a factor of h(x) show that $k = \pm 2$. Find all the factors of h(x) for that values of k.
- (12) (a) When the department of motor traffic issues number plates, it uses three letters from the English alphabet and then four digits.

If letter C is used as the first letter for cars,

- (i) How many distinct number plates can be issued for cars?
- (ii) Among the above number plates how many are odd numbers whose first and last digits are the same?

(b) Let
$$U_r = \frac{r^2 + 5r + 2}{r^2(r+1)^2}$$
 and $f(r) = \frac{1}{r}$ for $r \in \mathbb{Z}^+$

Determine the values of the constants A and B such that

$$U_r = A[f(r) - f(r+1)] + B[f(r^2) - f(r+1)^2]$$
 for $\in \mathbb{Z}^+$.

Hence show that $\sum_{r=1}^{n} U_r = 3 - \frac{n+3}{(n+1)^2}$.

Is the series $\sum_{r=1}^{\infty} U_r$ convergent?

Find the minimum integral value of *n* such that $S_{\infty} - S_n < \frac{1}{2}$

where $S_n = \sum_{r=1}^n U_r$ and $S_\infty = \sum_{r=1}^\infty U_r$.

(13) (a) Let
$$X = \begin{pmatrix} a & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix} Y = \begin{pmatrix} 2 & 0 & 3 \\ 1 & -2 & b \end{pmatrix}$$
 and $Z = \begin{pmatrix} 6 & -5 \\ c & -3 \end{pmatrix}$.

- (i) If $e = \frac{18}{5}$ Show that Z^{-1} exist.
- (ii) Find the values of the constants a, b and c such that $YX^T = Z + 2I$ where I is the unit matrix of order 2.
- (iii) For the above value of c write down Z^{-1}

(iv) Find the matrix P such that $Z^{-1}PZ = Z^2 + 7Z$.

API PAPERS GROUP (b) Define the modulus of Z, |Z| and the complex conjugate \overline{Z} for $Z \in \mathbb{C}$.

Show that $|Z|^2 = Z \overline{Z}$ and $Z + \overline{Z} = 2ReZ$.

(i) For
$$Z_1, Z_2 \in \mathbb{C}$$

Show that $|2Z_1 + 3Z_2|^2 = 4|Z_1|^2 + 12Re(Z_1\overline{Z}_2) + 9|Z_2|^2$.

Write down a similar expression for $|2Z_1 - 3Z_2|^2$

Hence show that $|2Z_1 + 3Z_2|^2 + |2Z_1 - 3Z_2|^2 = 8|Z_1|^2 + 18|Z_2|^2$

(ii) Describe the locus of the point represented by the complex number

 $Arg(Z-3) - Arg(Z+3) = \frac{\pi}{4}$, and draw rough sketch of the locus of Z.

(iii) State De Moivre's theorem for a positive integral index.

Prove that
$$\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}=\sin\theta+i\cos\theta$$

Hence show that $\left(1 + \sin\frac{\pi}{12} + i\cos\frac{\pi}{12}\right)^{12} + \left(1 + \sin\frac{\pi}{12} - i\cos\frac{\pi}{12}\right)^{12} = 0$

(14) (a) Let
$$f(x) = \frac{2x^2 + x - 1}{(x - 2)^2}$$
 for $x \neq 2$.

Show that f'(x) the derivative of f(x) is given by $f'(x) = \frac{-9x}{(x-2)^3}$ for $x \neq 2$.

Hence find the interval on which f(x) is increasing and the interval on which f(x) is decreasing. Also find the co-ordinates of the turning point of f(x).

It is given that $f''(x) = \frac{18(x+1)}{(x-2)^4}$ for $x \ne 2$. Find the co-ordinates of the point of inflexion the graph y = f(x).

Sketch the graph of y=f(x) indicating the asymptotes, the turning point and the point of inflexion.

AL API (PAPERS GROUP

(b) The length width and the height of a cuboid log are 4x, 2x and y respectively. When a small cuboid of length breadth and height x, x and y respectively is removed as shown in the figure, the volume of the remaining part is 1764 cm³. 3528

Show that the area of the remaining part of the log is given by $A=(14x^2+12xy)$ cm² Find the value of x when A is minimum.

(15) (a) Using the substitution
$$y = (x + 2)$$
 express $\frac{3x^3 + 2}{(x+2)^3}$

In the form
$$\frac{3x^3+2}{(x+2)^3} = A + \frac{B}{x+2} + \frac{C}{(x+2)^2} + \frac{D}{(x+2)^3}$$
.

Where A, B, C and D are constants to be determined.

Hence find
$$\int \frac{3x^3+2}{(x+2)^3} dx$$
.

Using integrating by parts, find $\int cos2xln \cdot \left(\frac{cosx+six}{cosx-sinx}\right) dx$

(c) Using a suitable substitution or otherwise, $\int_0^{2a} \frac{x^2}{(4a^2+x^2)^2} dx$

(d) Using the relation

 $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ for a constant a show that

$$I = \int_0^{\pi} \frac{x^2 \sin x}{(2x - \pi)(1 + \cos^2 x)} dx = \frac{\pi}{2} \int_0^{2a} \frac{\sin x}{1 + \cos^2 x} dx$$

Hence show that $I = \frac{\pi^2}{4}$.

Show that the perpendicular distance from the point (x_0, y_0) to the line lx + my + n = 0 is $\frac{|lx_0 + my_0 + n|}{\sqrt{l^2 + m^2}}$

Show that the straight line $(1-t^2)(x-a)+2t(y-b)=r(1+t^2)$ touches the circle $(x-a)^2+(y-b)^2=r^2$ for all $t\in\mathbb{R}$

Let $S_1 \equiv 5x^2 + 5y^2 - 6x + 8y - 35 = 0$ and $S_2 \equiv x^2 + y^2 - 2x - 4y - 11 = 0$ show that S_1 and S_2 intersect each other and find the location of the centre of $S_2 = 0$ with respect to the circle $S_1 = 0$. Show that two chords of $S_1 = 0$ of length 4 units can be drawn touching the circle $S_2 = 0$ and find the equations of the two chords.

(17) (a) Write down tan (A+B) interms of tan A and tan B.

Show that
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \tan\theta + \sec\theta$$
.

Hence find the values of $\tan \frac{\pi}{12}$ and $\tan \frac{7\pi}{12}$.

(b) State the sine rule for any triangle ABC in the usual notation.

In the triangle ABC, $B\widehat{A}C = \frac{\pi}{2}$. D and E are two points on BC such that BD =DE=EC

and angle
$$\widehat{CAE} = \alpha$$
. Show that $\tan \alpha = \sqrt{\frac{a^2 - b^2}{4b^2}}$.

- (c) (i) Solve the equation $2\cos\theta(\cos\theta \sqrt{3}\sin\theta) = 1$.
 - (ii) Solve the equation $tan(cos^{-1}x) = sin\left(cot^{-1}\left(\frac{1}{2}\right)\right)$.

AL API (PAPERS GROUP