පටුන	ම්ටුම්
9 ඵ්කකය – ඉලෙක්ටෝනික විදහාව	
01) අර්ධ සන්නායක සන්ධි දියෝඩ	03
02) ටුාන්සිස්ටර්	80
03) සංගෘතිත පරිපථ	11
04) තාර්කික දීවාර	13
10 ඒකකය – පදාර්ථයේ යාන්තික ගුණ	
01) පුතෳස්ථතාව	18
02) පෘෂ්ඨික ආතතිය	26
03) දුස්සුාවිතාව	34
11 ඒකකය – පදාර්ථ හා විකිරණ	
01) තාප විකිරණය	41
02) පුකාශ විදුපුත් ආචරණය	44
03) අංශු හා තරංග	47
04) විකිරණශීලීතාව	47
පිළිතුරු	
	51

01 අර්ධ සන්නායක සන්ධි දියෝඩ

- 01) නිසඟ අර්ධ සන්නායකයක් සම්බන්ධයෙන් කර ඇති පහත සඳහන් පුකාශ සලකා බලන්න.
 - A) උෂ්ණත්වය වැඩි වන විට, විද්යුත් සන්නායකතාව අඩු වේ.
 - B) උෂ්ණත්වය වැඩි වන විට නිදහස් ඉලෙක්ටුෝන සංඛ්‍යාවට කුහර සංඛ්‍යාව දරන අනුපාතය නියතව පවතී.
 - C) නිදහස් ඉලෙක්ටෝන සහ කුහර යන දෙවර්ගයම විද්යුත් සන්නායකතාවට දායක වේ. ඉහත පුකාශ අතුරින්
 - 1) A පමණක් සතා වේ.

2) B පමණක් සතා වේ.

3) C පමණක් සතා වේ.

- 4) B, C පමණක් සතා වේ.
- 5) A, B සහ C යන සියල්ලම සතා වේ.

(1997)

02) පුතාවේර්ත ධාරා ජනකයකින් සහ පූර්ණ තරංග සෘජුකාරකයකින් යුත් විද්යුත් සැපයුමක සුමට නොකළ පුතිදානයෙහි චෝල්ටියතාව (V) සහ කාලය (t) අතර සම්බන්ධතාව ඉතාමත් හොඳින් නිරූපණය කරනු ලබන්නේ

03) පහත පෙන්වා ඇති දියෝඩය හා පුතිරෝධ සංයුක්තය අතුරින් කුමක් X සහ Y ලක්ෂාය අතර කුඩා ම පුතිරෝධය ලබා දෙයිද?

Scanned by CamScanner

Scanned by CamScanner

1) A පමණක් සතා වේ

3) A සහ B පමණක් සතා වේ

5) A, B සහ C සියල්ල ම සතා වේ

(2014-32)

2) C පමණක් සතා වේ

4) A සහ C පමණක් සතා වේ

පෙන්වා ඇති පරිපථයෙහි එක් එක් සෘජුකාරක දියෝඩය ඉදිරි 21) නැඹුරු කිරීම සඳහා එය හරහා 1V වෝල්ටීයතාවක් අවශාය. දියෝඩ දෙකම ඉදිරි නැඹුරු කිරීම සඳහා X බැටරියේ චෝල්ටීයතාව විය යුත්තේ, 3) 3 V 1) 1 V (2015-15)5) 5 V 4) 4 V 02 ටාන්සිස්ටර් ටුංන්සිස්ටරයක් සහ පරිණාමකයක් සම්බන්ධයෙන් පහත දී ඇති පුකාශ සලකා බලන්න. 01) A) කුඩා පුතාවර්ත ධාරා සංඥාවක වෝල්ටීයතාව වැඩි කර ගැනීම සඳහා මෙම උපාංග දෙකම යොදා ගත හැකිය. B) කුඩා පුතපාවර්ත ධාරා සංඥාවක ධාරාව වැඩි කර ගැනීම සඳහා මෙම උපාංග දෙකම යොදා ගත හැකිය. C) කුඩා පුතාහවර්ත ධාරා සංඥාවක ක්ෂමතාව වැඩි කර ගැනීම සඳහා මෙම උපාංග දෙකෙන් එකක් වත් යොදා ගත නොහැකිය. ඉහත පුකාශ අතුරින් සතා වන්නේ, 2) B පමණි 3) A සහ B පමණි 1) A පමණි (1998)4) A සහ C පමණි 5) A, B සහ C සියල්ලම 02) npn ටාන්සිස්ටරයක් විවෘත ස්විච්චි තත්ත්වයේ කුියාත්මක වන අවස්ථාව හා සංසන්දනය කළ විට සංවෘත ස්විච්චි තත්ත්වයේ කියාත්මක වන අවස්ථාවේ දී එයට ඉතා කුඩා, 1) පාදම් ධාරාවක් ඇත. 2) සංගුාහක ධාරාවක් ඇත. 3) විමෝචක ධාරාවක් ඇත. 4) විමෝචක - පාදම් වෝල්ටියතාවයක් ඇත. 5) සංගාහක- වීමෝචක චෝල්ටියතාවයක් ඇත. (1998)රූපයේ දක්වා ඇති පරිපථයෙහි R යනු විචලා 03) පුතිරෝධයක් වන අතර $R_{
m C}$ ට අචල අගයක් ඇත. R, එහි උපරිම අගයෙහි පවකින විට, ටුාන්සිස්ටරය එහි කුියාකාරී පුදේශයේ හි නැඹුරු වී ඇත. R හි අගය කුමයෙන් අඩු කරගෙන යන විට a) පාදම ධාරාව IB වැඩි වේ. b) සංගාහක ධාරාව Ic අඩු වේ. c) පුතිදාන චෝල්ටීයතාව Vout අඩු වේ. ඉහත පුකාශ වලින් 3) c පමණක් සතා වේ. 2) b පමණක් සතා වේ. 1) a පමණක් සතාය වේ. 4) a හා b පමණක් සතා වේ. 5) a හා c පමණක් සතා වේ. (1999)පෙන්වා ඇති සිලිකන් ටුාන්සිස්ටරය හරහා සපයා ඇති 04) වෝල්ටීයතා V_{BE} , V_{CB} සහ V_{CE} යන සංකේත වලින් නිරූපණය කරනු ලැබේ. ටුාන්සිස්ටරය කියාකාරී පුදේශය තුළ කිුයා කරවීමට නම් $V_{BE} = 0.7 \, V$ සහ $V_{CB} = 0.7 \, V$ 2) $V_{BE} = 0 \text{ V}$ $E_{BE} = 0.7 \text{ V}$ 3) $V_{BE} = 5 V \text{ to } V_{CE} = 4.2 V$ 4) V_{BE} = 0.7 V සහ V_{CE} = 5 V 5) V_{CB} = 0.7 V සහ V_{CE} = 0 V (2002)පහත දී ඇති මූලාවයන්වලින් ක්ෂමතාවය (VI) වර්ධනය කළ හැකි එකම මූලාවයවය 05)

1) පුතිරෝධක 2) දියෝඩ 3) ධාරිතුක 4) පරිණාමක

වනුයේ

(2003)

5) වුාන්සිස්ටර

Scanned by CamScanner

- 15) එක් ටුාන්සිස්ටරයක් භාවිත කර සාදන ලද පොදු වීමෝචක වර්ධකයක් සහ කාරකාත්මක වර්ධකයක් පිළිබඳ ව කර ඇති පහත සඳහන් පුකාශ සලකා බලන්න.
 - A) පොදු වීමෝචක වර්ධකයක පුතිදාන සංඥාවට සැමවිට ම පුදාන සංඥාව සමග 180° කලා වෙනසක් පවතී.
 - B) කාරකාත්මක වර්ධකයක් භාවිත කර සාදනු ලබන අපවර්තන නොවන වර්ධකයක් මගින් සැමවිටම පුදාන සංඥා සමග එකම කලාවේ පිහිටන පුතිදාන සංඥා නිපදවයි.
 - C) පොදු වීමෝචක වර්ධකයකට ඇත්තේ එක් පුදාන අගුයක් පමණක් වන අතර කාරකාත්මක වර්ධකයකට පුදාන අගු දෙකක් ඇත.

ඉහත පුකාශ අතුරෙන්

- 1) A පමණක් සතා වේ
- 2) A සහ B පමණක් සතා වේ
- 3) B සහ C පමණක් සතා වේ
- 4) A සහ C පමණක් සතා වේ
- 5) A, B සහ C සියල්ල ම සතා වේ

(2013 O-52)

16) npn ටුාන්සිස්ටරයක් සහ n චැනල සන්ධි ක්ෂේතු ආචරණ ටුාන්සිස්ටරයක් (JFET) පිළිබඳ ව පහත දක්වෙන කුමක් සතා නොවේද?

	nan Arabadasa	I DO TECT
	npn ටුංන්සිස්ටරය	n වැනල JFET
1)	pn සන්ධි දෙකක් ඇත.	එක් pn සන්ධියක් පමණක් ඇත.
2)	කියාකාරි විධියේ කියාත්මක වන විට පාදම-විමෝචක සන්ධිය ඉදිරි නැඹුරු කර ඇත.	කියාකාරිත්වයේ දී ද්වාර-පුහව සන්ධිය පසු නැඹුරු කර ඇත.
3)	ටුාන්සිස්ටර සංකේතයේ වීමෝචකය මත ඊතලයක් ලකුණු කර ඇත.	ටා <mark>න්සිස්</mark> ටර සංකේනයේ පුභවය මත ඊතලයක් ලකුණු කර ඇත.
4)	ටුංන්සිස්ටරයේ කියාකාරිත්වයේදී නිදහස් ඉලෙක්ටුෝන සහ කුහර යන දෙවර්ගය ම සහභාගි වේ.	නිදහස් ඉලෙක්ටුෝන පමණක් කිුයාකාරිත්වයේදී සහභාගි වේ.
5)	සංගුාහකය හරහා ධා <mark>රාවේ</mark> විශාලත්වය පාදම-විමෝචක චෝල්ටීයතාව මත රඳා පවතී.	චැනලය හරහා ධාරාවේ විශාලත්වය ද්වාර- පුභව චෝල්ටීයතාව මත රඳා පවතී.
THE COLUMN		(2014.24)

(2014-34)

17) පෙන්වා ඇති පරිපථයේ ටුාන්සිස්ටරයෙහි ධාරා ලාභය 100 ක් වේ. පාදමට වෙනස් I_B අගයන් විට, ටුාන්සිස්ටරයේ කුියාන්විත වීධි පිළිබඳව පහත කුමක් සතා වේද?

	යොදන I_B අගය μA වලින්	ටුාන්සිස්ටරයේ කිුයාන්විත විධිය
1)	0	සංතෘප්ත විධිය
2)	5	කපාහැරි විධිය
3)	12	කිුියාකාරි විධිය
4)	15	කපාහැරි විධිය
5)	20	සංතෘප්ත විධිය

03 සංගෘහිත පරිපථ

01) 741 කාරකාත්මක වර්ධකයකට ජවය සපයා ඇත්තේ \pm 15V සැපයුම් වොල්ටීයතා මගිනි. V_1 හා V_2 මගින් පුධාන චෝල්ටීයතාවයන් ද, V_0 මගින් පුතිදාන චෝල්ටීයතාවය ද නිරූපණය වේ නම් (V_1-V_2) සමඟ V_0 හි විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ

Scanned by CamScanner

Scanned by CamScanner

(2013 O-54)

පහත (1) සිට (5) තෙක් දී ඇති පරිපථ සඳහා යොදා ඇති තාර්කික පුදානයන් A සහ B 20) මගින් නිරූපණය කර ඇති අතර පරිපථය මගින් අපේක්ෂිත පුතිදානය F මගින් නිරූපණය කර ඇත.

පහත (1) සිට (5) තෙක් පරිපථ අතුරෙන් කුමන පරිපථය අපේක්ෂිත පුතිදානය ලබා දෙයිද?

21) P, Q සහ R මඟින් දක්වා ඇත්තේ දී ඇති (A), (B) සහ (C) පරිපථවලට යොදා ඇති ද්වීමය පුදාන වීවලාසන් ය. යොදා ඇති පුදාන සංයුක්ත සඳහා පරිපථ මගින් ලැබෙන ${\rm F}_{1,1}$

- 1) A හා B පමණක් එකම පුතිදානය ලබා දෙයි.
- 2) B හා C පමණක් එකම පුතිදානය ලබා දෙයි.
- 3) A හා C පමණක් එකම පුතිදානය ලබා දෙයි.
- 4) පරිපථ තුනම එකම පුතිදානය ලබා දෙයි.

5) පරිපථ තුන එකිනෙකට වෙනස් පුතිදාන ලබා දෙයි.

(2015-37)

10 ඒකකය –පදාර්ථයේ යාන්තික ගුණ

01 පුතපස්ථතාව

- හරස්කඩ කෝතු එලය $0.01~{
 m cm}^2$ වූ ද දිග $2~{
 m m}$ වූ ද කම්බියක් යං මාපාංකය $2~{
 m x}~10^{12}~{
 m Nm}^{-2}$ වූ දුවසයකින් සාදා ඇත. කම්බිය 0.1mm දිගකින් ඇදීමේදී සිදු කරන කාර්යය ජූල්වලින්, 1) 1) 5 x 10⁻³ වේ. (1982)5) 5 x 10⁵ eD.
- දිග 8 m සහ යං මාපාංකය $2 \times 10^{11} \text{Nm}^{-2}$ වන කුහර සිලින්ඩරාකාර වානේ කුළුනක්, 2) $9.9 \times 10^4 \mathrm{N}$ සම්පීඩන භාරයක් යටතේ $0.35 \mathrm{mm}$ පුමාණයකින් කෙටි වේ. $\pi = \frac{22}{7}$ සේ උපකල්පනය කරන්න. සිලින්ඩරයේ අභානේතර අරය බාහිර අරය මෙන් 0.8 ගුණයක් නම බාහිර අරය, 5) 12 cm 4) 10 cm 3) 8cm 2) 5cm 1) 1cm
- ස්වභාවික දිග ℓ වූ රබර් නලයක එක් කෙළවරකට w බරක් සම්බන්ධ කර ඇති අතර එහි 3) අනෙක් කෙළවර සීලිමට සවි කර ඇත. නලයේ අභාගන්කර සහ බාහිර අරයෙන් පිළිවෙලින් r_1 සහ r_2 වන අතර රබර්වල යං මාපාංකය Y වේ. r_1 සහ r_2 වෙනස් නොවේ යැයි සැලකු විට නලයේ ගබඩා වී ඇති ශක්තිය,
 - 1) $\frac{1}{2Y^2} \left(\frac{W}{\pi (r_2^2 r_1^2)} \right)^2$ 2) $\frac{1}{2Y} \left(\frac{\pi (r_2^2 r_1^2)}{W} \right)$ 3) $\frac{1}{2Y} \left(\frac{W}{\pi (r_2^2 r_1^2)} \right)^2$ 4) $2Y \left(\frac{wl}{\pi(r_2^2 - r_1^2)}\right)^2$ 5) $\frac{1}{2} \left[\frac{w^2l}{\pi Y(r_2^2 - r_1^2)}\right]$ (1984)
- ඉහළ කෙළවර අවල ලෙස සවි කර ඇති කම්බියකින් පරිමාව $4 \times 10^{-4} \; ext{m}^3$ ක් වූ වස්තුවක් 4) එල්ලා ඇත. කම්බියේ අරය $0.2~\mathrm{mm}$ වන අතර එය යං මාපාංකය $7~\mathrm{x}~10^{-4}~\mathrm{Nm}^{-2}$ වූ දුවායකින් සාදා ඇත. වස්තුව සම්පූර්ණයෙන් ම ජලයේ ගිල් වූ විට කම්බියේ දිග $10^3~\mathrm{m}$ පුමාණයකින් වෙනස් වේ. වස්තුව වාතයේ දී එල්වා ඇති විට කම්බියේ දිග (ජලයේ සනත්වය 10¹ kgm⁻³) 1) 1.0 m 2) 2.2 m 3) 2.5 m 4) 3.1 m 5) 3.5 m (1984)
- සමාන දිග හා සමාන හරස්කඩ කෙෂ්තුඵල ඇති A සහ B කම්බි දෙකක් රූප யාயා 5) සටහනේ දක්වෙන ආකාරයට සම්බන්ධ කර ඇත. A සහ B හි යං මාපාංක

පිළිවෙලින් F_A සහ F_B වේ. B හි නිදහස් කෙළවරින් M ස්කන්ධය එල්වා ඇති නම්, A හි විතතිය/ B හි විතතිය අනුපාතය, 1) $\frac{F_B}{F}$ 2) $\frac{F_A}{F_B}$ 3) $\left(\frac{F_A}{F_B}\right)^2$ 4) $\left(\frac{F_B}{F_A}\right)^2$ 5) $\left(\frac{F_B}{F_B}\right)^2$

- (1985)
- කම්බියක් සඳහා පුතාහබල (P) විකියා (Q) වකුය මෙහි 6) දක්වේ. කම්බියේ යං මාපාංකය වනුයේ
 - 1) $0.5 \times 10^{11} \text{ Nm}^{-2}$
- 2) $2.0 \times 10^{11} \text{ Nm}^{-2}$
- 3) $8.0 \times 10^{11} \text{ Nm}^{-2}$
- 4) $1.6 \times 10^{12} \text{ Nm}^{-2}$
- 4) $3.6 \times 10^{12} \text{ Nm}^{-2}$

(1986)

X සහ Y කම්බි දෙකක් එකම දුවායෙන් සාදා ඇත. X හි විෂ්කම්භයෙන් Y හි විෂ්කම්බය 7) මෙන් තුන් ගුණයක්ද X හි දිග Y හි දිග මෙන් දෙගුණයක්ද වේ. පුතාසේත සීමාව නොඉක්මවන සේ කම්බී දෙකට එක ආතතිය යෙදු විට X හි විතතියට Y හි චිතතිය දරණ අනුපාතය.

2) $\frac{2}{3}$ 3) $\frac{1}{2}$ 4) $\frac{4}{9}$ 5) $\frac{2}{9}$

(1987)

එකම දුවාලයන් සාදා ඇති සමාන දිගකින් යුත් කම්බි දෙකක විෂ්කම්භයන්ගේ අනුපාතය 8) 4වේ. දෙන ලද භාරයක් යටතේ

සිහින් කම්බියෙහි විතතිය ඝන කම්බියෙහි විතතිය

යන අනුපාතය,

- 1) 2 මව්
- 2) 4 වේ.
- 3) 8 වේ. 4) 16 වේ. 5) 32 වේ.

(1988)

- පහත දක්වෙන රාශි යුගල අතුරින් රාශි දෙකෙහි ම මාන සමාන වන්නේ කුමකද? 9)
 - 1) ගුරුත්වජ නියනය, ගුරුත්වජ ත්වරණය 2) යං මාපාංකය, පෘෂ්ඨික ආතතිය
 - 3) බල යුග්මයක සූර්ණය. ගමානාව 4) ආවේගය, ගමානාව

5) කාර්යය, ඎමතාව

(1990)

 I_1 දිගැනි AB දණ්ඩ I_2 දිගැනි BC දණ්ඩකට සම්බන්ධ කර ඇති අතර රූපයේ A A10) පෙන්වන අයුරු සංයුක්ත දණ්ඩ F අවල ඇදීමේ බලයකට යටත් කොට ඇත. /ා දඬු දෙකටම ඇත්තේ සර්වසම හරස්කඩ කෙෂ්නුඵලයක් නම් ද,

AB දණ්ඩ සාදා ඇති දුවාගේ යං මාපාංකය BC දණ්ඩ සාදා ඇති දුවායේ යං මාපාංකය = 2 ද නම්.

AB දණ්ඩ මගින් ඇති කරන විතතිය BC දණ්ඩ මගින් ඇති කරන විතතියට සමාන වීමට,

$$I_1 = \frac{FI_2}{3}$$
විය යුතු ය.

2)
$$I_1 = \frac{2}{3} I_2$$
 විය යුතු ය.

1)
$$I_1 = \frac{FI_2}{3}$$
 විය යුතු ය. 2) $I_1 = \frac{2}{3} I_2$ විය යුතු ය. 3) $I_1 = \frac{3}{2} FI_2$ විය යුතු ය.

4)
$$I_1 = \frac{5}{2} \ h$$
විය යුතු ය. 5) $I_1 = \frac{3}{5} \ h$ විය යුතු ය.

5)
$$I_1 = \frac{3}{5} I_2$$
විය යුතු ය

(1992)

පහත සඳහන් පුස්තාරවල තිත් ඉර මගින් දක්වා ඇ<mark>ත්තේ</mark> සිලිමක එල්වා ඇති ද 11) සැහැල්ලු දුන්නක විතතිය (/), භාරය W සමඟ වෙනස් වන අයුරුය. (A) රූපයේ පෙන්වා ඇති පරිදි එවැනි දුනු දෙකකින් භාරය එල්වා ඇති විටක භාරය සමඟ විතතිය වෙනස් වන අයුරු වඩාත්ම හොඳින් නිරූපණය කෙරෙන අනුරූප පුස්තාරය කුමක් ද?

- රසදිය 2.6×10^6 Pa සඵල පීඩනයකට යටත් කළ විට එහි පරිමාව 0.01% කින් සංකෝචනය 12) වේ. රසදියේ තිකර මාපාංකය වනුයේ, 2) $2.6 \times 10^4 \text{ Pa}$ 3) $2.6 \times 10^6 \text{ Pa}$ 1) 2.6 x 10² Pa
 - 5) 2.6 x 10¹⁰ Pa

- 4) 2.6 x 108 Pa

19) දිග 10 cm වූ ද හරස්කඩ වර්ගඑලය 20 cm² වූ ද A ඇලුමිනියම් (යං මාපාංකය = 7.0 x 10 10 Nm²², රේඛීය පුසාරණතාව = 2.5 x 10⁵ K²¹) සිලින්ඩරයක් දෘඪ බිත්ති දෙකක් අතර ඇති අවකාශය තුළ රූපයේ පෙන්වා ඇති පරිදි තබා ඇත. 30°C හි දී මෙම සිලින්ඩරය බිත්ති දෙක අතර අවකාශය තුළ යන්තමින් ලිස්සා යයි. 34°C දක්වා රත් වූ විට මෙම සිලින්ඩරය එක් එක් බිත්තිය මත ඇති කරන බලය වනුයේ

1) 1.4×10^{3} N 5) 7.0×10^{6} N 2) $3.5 \times 10^3 \text{N}$

 $3) 1.4 \times 10^4 \text{N}$

4) $1.4 \times 10^5 \text{N}$

(2000)

- 20) සිරස් ලෙස සිවිලිමේ එල්ලා ඇති පුතාහස්ථ ඒකාකාර කම්බියක පහත කෙළවරින් ස්කන්ධයක් එල්ලා ඇත. කම්බියේ සමානුපාත සීමාව ඉක්මවා නොමැති ව ඇතැයි උපකල්පනය කරමින් පහත සඳහන් පුකාශ සලකා බලන්න.
 - A) කම්බියේ දිග දෙගුණ කළේ නම්, කම්බියේ විකිුයාව දෙගුණ වේ.
 - B) කම්බියේ හරස්කඩ වර්ගඵලය දෙගුණ කළේ නම්, කම්බියේ විකිුයාව දෙගුණ වේ.
 - C) එල්ලන ලද ස්කන්ධය දෙගුණ කළේ නම්, කම්බියේ වීකිුයාව දෙගුණ වේ. ඉහත පුකාශ අතරෙන්
 - 1) A පමණක් සතා වේ.
- 2) B පමණක් සතා වේ.
- 3) C පමණක් සතා වේ.

4) A සහ C පමණක් සතා වේ.

5) B සහ C පමණක් සතා වේ.

(2001)

21) එක් කෙළවරක් දෘඪ ලෙස සම්බන්ධ කොට ඇති සිරස් පුතාසේථ තන්තුවක පහළ කෙළවරට ස්කන්ධයක් සම්බන්ධ කොට ඇත. දැන් F බලයක් යෙදීමෙන් ස්කන්ධය නියත පුවේගයකින් පහළට චලනය කරවනු ලැබේ. කාලය t සමඟ F හි වෙනස් වීම වඩාත් ම හොඳින් නිරූපනය කරනුයේ,

- 22) X කම්බිය සාදා ඇති දුවායේ යං මාපාංකය Y කම්බිය සාදා ඇති දුවායේ එම අංකයට වඩා වැඩිය. කම්බි දෙකම එකම ආතතියට ලක් කළ විට X කම්බියෙහි විතතිය Y කම්බියෙහි එම අගයට වඩා වැඩි බව සොයා ගන්නා ලදි. පහත සඳහන් පුකාශ සලකා බලන්න.
 - (A). X කම්බියෙහි විෂ්කම්බියෙහි Y ට වඩා අඩු වුවහොත් පමණක් ඉහත සිදුවීම විය හැක.
 (B) X කම්බිය සඳහා මුල් දිග යන අනුපාතයහි ඇති අගයට වඩා වැඩි වුවහොත් විෂ්කම්භය

පමණක් ඉහත සිදුවීම සිදු විය හැක.

(C)X කම්බියෙහි දිග Y කම්බියෙහි දිගට වඩා අඩු වුවහොත් ඉහත සිදුවීම කිසිවිටක සිදුවීය නොහැක.

ඉහත පුකාශ වලින්

- 1) (A) පමණක් සතා වේ.
- 2) (B) පමණක් සතා වේ.
- 3) (C) පමණක් සතා වේ.
- 4) (A) සහ (B) පමණක් සතා වේ.
- 5) (B) සහ (C) පමණක් සතා වේ.

(2002)

B දෘඪ ලෝහ කුට්ටියකට සම්බන්ධ කර ඇති සමාන දිග සහ සමාන හරස්කඩ වර්ගඵලයක් සහිත තඹ දණ්ඩක් සහ වානේ දණ්ඩක් රූපයේ පෙන්වා ඇත. දඬුවල අනෙක් කෙළවරවල් දෘඪ බිත්තිවලට සවි කර ඇත. තඹ සහ වාතේ වල යංමාපාංක පිළිවෙළින් Y_{Cu} සහ Y_{St} වේ. ආරම්භයේ දී දඬු පුතාහබලයකට යටත් වී නොමැත. ඉස්කුරුප්පු දෙක භාවිත කර ලෝහ කුට්ටිය කුඩා $\Delta \ell$ දුරක් වම් අතට චලනය කරන ලද්දේ නම්,

තඹ දණ්ඩේ ගබඩා වූ ශක්තිය යත අනුපාතය වන්නේ, වාතේ දණ්ඩේ ගබඩා වූ ශක්තිය

- ලෝහ කම්බියක් සඳහා යෝජිත F බලය සහ ΔI විතතියේ වනුය 38) රූපයේ පෙන්වා ඇත. පහත සඳහන් පුකාශ සලකා බලන්න.
 - (A)අනෙක් පරාමිති වෙනස් නොකර වඩා අඩු හරස්කඩ වර්ගඵලයක් සහිත වෙනත් කම්බියක් භාවිත කළහොත් එයට අදාළ වකුය රූපයේ පෙන්වා ඇති වකුයට ඉහළින් වැටේ.
 - (B) යංමාපාංකය වඩා වැඩි එහෙත් අනෙක් පරාමිති සර්වසම වන කම්බියක් භාවිත කළහොත් එයට අදාළ වකුය රූපයේ පෙන්වා ඇති වකුයට පහළින් වැටේ.
 - (C) අනෙක් පරාමිති වෙනස් නොකර වඩා වැඩි දිගක් සහිත කම්බියක් භාවිත කළහොත් එයට අදාළ වකුය රූපයේ පෙන්වා ඇති වකුයට පහළින් වැටේ.

ඉහත පුකාශ අතුරෙන්

37)

- 2) (C) පමණක් සතා වේ.
- 1) (A) පමණක් සතා වේ. 3) (A) සහ (B) පමණක් සතා වේ. 4) (B) සහ (C) හි පමණක් සතා වේ.
- 5) (A), (B) සහ (C) යන සියල්ල ම සතා වේ.

(2013-33)

- 1) $E_A > E_B = E_C$
- $3) E_A = E_B = E_C$
- 2) $E_A = E_B > E_C$ 4) $E_A > E_B > E_C$
- 5) $E_A < E_B < E_C$

- සර්වසම භෞතික මාන සහිත, එහෙත් $Y_1,Y_2,Y_3,...,Y_n$ වූ වෙනස් යං මාපාංක ඇති දඬු n40) සංඛාාවක් කෙළවරින් කෙළවරට සම්බන්ධ කර සෘජු සංයුක්ත දණ්ඩක් සාදා ඇත. මෙම සංයුක්ත දණ්ඩේ තුලෳ (සමක) යං මාපාංකය දෙනු ලබන්නේ,
 - 1) $\frac{Y_1 + Y_2 + Y_3 + \dots + Y_n}{n}$
- 2) $(Y_1 + Y_2 + Y_3 + ... + Y_n)n$

- 4) $\frac{1}{\frac{1}{V} + \frac{1}{V} + \frac{1}{V} + \dots + \frac{1}{V}}$
- 5) $(Y_1Y_2Y_3...Y_n)^{\frac{1}{n}}$

(2015-21)

02. පෘෂ්ඨික ආතතිය

පෙන්වා ඇති සැකැස්මෙහි පෘෂ්ඨික ආතතිය Γ සහ ඝනත්වය ho වූ ජලය අරය Γ වූ කේෂික නලය තුළ H උසකට ඉහළ නැග ඇත. වායුගෝලීය පීඩනය π නම් p හිදී පීඩනය,

1)
$$\pi + H\rho g + \frac{2T}{r}$$
 2) $\pi + H\rho g + \frac{2T}{r}$

$$2) \pi + H\rho g + \frac{2T}{r}$$

3)
$$\pi - H\rho g - \frac{2T}{r}$$

4) π 5) ශූතා වේ. (1982)

අභාගන්තර අරය r_1 හා r_2 වන A සහ B වීදුරු කේශින නළ දෙකක්, 2) රූපයේ පෙනෙන අයුරු C නම් සිහින් නළයකින් සම්බන්ධ කොට ඇත. B නළයේ උඩු කෙළවර ඇවුරුම් කර ඇත. නළ දෙකෙහි ජල මට්ටම් සමාන වන තෙක් A නළයට පෘෂ්ඨික ආතතිය T වන ජලය වත් කරනු ලැබේ. වීදුරු හා ජලය අතර ස්පර්ශ කෝනය ශූනා නම් ද වායුගෝලීය පීඩනය π නම්, කේශික නළය තුළ පවත්වා ගත හැකි උපරිම පීඩනය

$$2) \pi + \frac{2T}{r_2}$$

2)
$$\pi + \frac{2T}{r_2}$$
 3) $\pi + \frac{2T}{r_1} - \frac{2T}{r_2}$ 5) $\pi + \frac{2T}{r_1} - \frac{2T}{r_2}$

4)
$$\pi - \frac{2T}{r_1} + \frac{2T}{r_2}$$

5)
$$\pi + \frac{2T}{r_1} - \frac{2T}{r_2}$$

3) ශිෂායෙක්, සිදුරෙහි අරය r වන පිරිසිදු වීදුරු කේෂික නළයක්, එහි පහළ කෙළවර නිදහස් ජල පෘෂ්ඨයේ සිට h ගැඹුරකින් සිටින සේ, ඝනත්වය p සහ පෘෂ්ඨික ආතතිය T වන ජලයේ සිරස්ව ගිල්වයි. ඔහු දත් නළයේ ඉහළ කෙළවරින් පිඹි. වායුගෝලීය පීඩනය π නම්, කේශික නළය තුළ පවත්වා ගත හැකි උපරිම පීඩනය

1) hp g +
$$\pi$$

1)
$$h \rho g + \pi$$
 2) $(h \rho g + \pi) - \frac{2T}{r}$

3)
$$(h\rho g + \pi) + \frac{2T}{r}$$

4)
$$(h\rho g + \pi - \frac{4T}{r})$$
 5) $(h\rho g + \pi) + \frac{4T}{r}$

5)
$$(h\rho g + \pi) + \frac{4T}{r}$$

A නම් බීකරයක පතුලේ අරය r වූ වෘත්තාකාර සිදුරක් ඇත. මෙම 4) බීකරය, පෘෂ්ඨික ආනතිය Tසහ ඝනත්වය ho වන ජලයේ කුමයෙන් හිල්වනු ලැබේ. බීකරය තුළට ජලය ගලා ඒමට පටන් ගන්නාවිට දී රූපයේ පෙන්වා ඇති h ගැඹුරෙහි අගය,

- 2) 2T/ gr
- 3) T/ pgr

- 4) T/2 pgr
- 5) 2T/ pgr3

(1984)

සිහින් රබර් තන්තුවක් f නම් අන්වායාම ඇදි බලයකට යටත් කළ විට $1~{
m cm}$ කින් දික් වේ. 5) නොඇදි අවස්ථාවේදී මෙම තන්තුවෙන් අරය R cm වන වෘත්තාකාර පුඩුවක් සාදන ලදි. මෙම පුඩුව සබන් පටලයක් මත තබා පුඩුව තුල ඇති පටල කොටස බිඳ දමූ විට පුඩුවේ අරය (R+x) cm බවට පත් වේ. පටලයේ පෘෂ්ටික ආතතිය දෙනු ලබන්නේ,

- 1) $\frac{\pi f x}{R}$ 2) $\frac{\pi f R}{x}$ 3) $\frac{2\pi f (R+x)}{x}$ 4) $\frac{2\pi f x}{R+x}$ 5) $\frac{\pi f x}{R+x}$ (1984)

පහත දක්වෙන ආවරණවලින් කුමක් පෘෂ්ටික ආනතිය නිසා සිදු වන්නේද? 12) 1) උෂ්ණත්වය වැඩි වන විට උෂ්ණත්වමානයක රසදිය ඉහළ නැගීම. 2) පහළට වැටෙන දුව බින්දු ගෝලාකාර හැඩයක් ගැනීම. 3) වායු ගෝලීය පීඩනය වැඩිවන විට බැරෝමීටරයක රසදිය ඉහළ යෑම. 4) තරලයක් තුළ පහළට වැටෙන ගෝලාකාර වස්තුවක් නියන පුවේගයෙක් ලබා ගැනීම. 5) සුවඳ, විලවුන් බෝතලයක් විවෘත කළ විට එහි සුවඳ කාමරයක් තුළ පැතිර යාම. (1987) 13) රූපයේ දක්වෙන ආකාරයට මැතෝමීටරයකට සහ P කපාටයකට සවි කරන ලද බටයක කෙළර සබන් බුබුලක් සෑදි ඇත. මැතෝමීටර දුවයේ ඝණත්වය p වේ. මැනෝමීටරයේ පාඨාංකය h වන විට බුබුලේ අරය r වේ. පහත සඳහන් පුකාශ සලකා බලන්න (A) බුබුල තුළ පීඩනය hp g (B) h වැඩි වන විට r අඩුවේ. (C) h = 0 වනුයේ බුබුල කැඩි ගිය විට පමණි. ඉහත පුකාශවලින්, 1) A පමණක් සතා වේ. 2) B පමණක් සතා වේ. 3) C පමණක් සතා වේ. 4) A හා C පමණක් සතා වේ. 5) B සහ C පමණක් සතා වේ. (1987)14) තිරස්ව තබා ඇති කේශික බටයක් තුළ ඇති ජල කඳක් රූපයේ පෙන්වා ඇත. XY රේඛාව මස්සේ පීඩනය (P) හි වීචලනය වීම හොඳින්ම නිරූපණය කෙරෙන්නේ පහත දැක්වෙන කුමන පුස්තාරයෙන්ද? 1) 2) 3) 4) 5) (1988)15) රූපයේ පෙන්වා ඇති උපකරණයේ වීදුරු බටයෙහි කෙළවර A නම් විශාල සබන් බුබුලක් සහ B නම් කුඩා සබන් බුබුලක් සාදා ඇති අතර PQ සහ R යන කපාට වසා ඇත. දන් R විවෘත කළහොත්. 1) A සංකෝචනය වන අතර B විශාල වේ. 2) B සංකෝචනය වන අතර A විශාල වේ. 3) A සහ B දෙකම විශාල වේ. 4) A සහ B දෙකම සංකෝචනය වේ. 5) A සහ B දෙකම පුමාණ නොවෙනස්ව පවතී. (1988)අරය R වූ ගෝලාකාර ජල බිංදුවක් තුළ අමතර පීඩනය P වේ. ජල බිංදුව එක සමාන ජල 16) බිඳිනි 8 කට කැඩූ විට ඉන් එක් බිඳිත්තක් තුළ අමතර පීඩනය, 1) 0.5 P 2) 2P 3) 4 P (1989)17) A කේෂික නලය විශාල විෂ්කම්බයක් සහිත B නලය සමඟ රූපයේ පෙන්වා ඇති ආකාරයට සම්බන්ධ කොට ඇත. B තුළට ජලය වත්කර, A සහ B නලවල පිහිටන සමතුලිත ජල මට්ටම පිළිවෙලින් h හා H ලෙසින් OO' මට්ටමේ සිට කියවනු ලැබේ. H සමඟ h විචලනය වන අයුරු වඩාත්ම හොඳින් නිරූපනය කරන්නේ,

- 29) අරයයන් 3 cm සහ 4 cm වූ සබන් බුබුලු දෙකක් රික්තයක් තුළදී සමෝෂ්ණ තත්ත්වය යටතේ එක් වී තනි බුබුලක් සැදේ. එම බුබුලේ අරය චනුයේ 1) 1cm 2) 2cm 3) 5cm 4) 6 cm 5) 8 cm (1999)
- 30) සිරස් කේෂික නළයකින් කොටසක් ජලයේ ගිල්වා, නළය තුළ පීඩනය, එය තුළට වාතය පොම්ප කිරීමෙන් කුමයෙන් වැඩි කරනු ලැබේ. නළයේ පහත කෙළවර ජල පෘෂ්ඨයේ සිට h ගැඹුරකින් ඇත. h වෙනස් කරන විට නළය තුළ පැවතිය හැකි උපරිම පීඩනය ρ , h සමග විචලනය වන අන්දම වඩාත් ම හොඳින් දක්වෙන්නේ,

31) රූපයෙහි දක්වා ඇති වීදුරු U – නළයෙහි එක් බාහුවක් කේශික නළයකින් තනා ඇති අතර අනෙක් බාහුව තනා ඇත්තේ පළල් නළයක් මගිනි. U නළය තුළට ජලය ඇතුල් කළ විට කේශික නළය තුළ සහ පළල් නළය තුළ සමතුලිත ජල මට්ටම්වල උස OO' සිට පිළිවෙළින් h සහ H නම්, h හි අගය H සමඟ විචලනය වන ආකාරය වඩාත් හොඳින් නිරූපණය වන්නේ

- 32) වානේ බ්ලේඩ් තලයක් ජල පෘෂ්ඨයක් මත රැඳවීමට සැලැස්විය හැක. මේ සම්බන්ධයෙන් පහත සඳහන් පුකාශ සලකා බලන්න.
 - A) වාතේ බ්ලේඩ් තලය මත උඩුකුරු තෙරපුමක් කියා තො කරන බැවින් වාතේ බ්ලේඩ් තලය ජල පෘෂ්ඨය මත රැඳී සිටීම ආකිමිඩීස් මූලධර්මයට පටහැනි වේ.
 - B) ජලයේ පෘෂ්ඨික ආතතිය නිසා කිුිියාකරන බල මගින් වානේ බ්ලේඩ් තලය ජල පෘෂ්ඨය මත රඳවා තබා ගනී.
 - C) සබන්, ජලයේ පෘෂ්ඨික ආතතිය අඩුකරන බැවින් සබන් ජලයට එකතු කිරීමෙන් වානේ බ්ලේඩ් තලය ගිල්විය හැක.

ඉහත පුකාශ අතරෙන්

- 1) A පමණක් සතා වේ. 2) B පමණක් සතා වේ. 3) C පමණක් සතා වේ.
- 4) A සහ B පමණක් සතා වේ. 5) B සහ C පමණක් සතා වේ. (2001)
- 33) සබන් බුබුලු දෙකක් එකට එකතු වේ. ඒවා එකතු වූ පසු බුබුලු දෙකක් අරයයන් a හා b වේ. (a > b) බුබුලු දෙක අතර අතුරු මුහුණතේ වකුතා අරය වන්නේ,

1) b - a 2) b + a 3)
$$\frac{b^2}{a} - \frac{a^2}{b}$$
 4) $\frac{ab}{a-b}$ 5) $\frac{a^2b}{(a-b)^2}$ (2002)

- 34) පාද හයකින් යුත් කෘමියෙක් ජල පෘෂ්ඨයක් මත සිටගෙන සිටී. සෑම පාදයකට ම වෘත්තාකාර පැතලි හැඩයෙන් යුක්ත පතුළක් ඇති අතර එහි අරය $2 \times 10^{-4} \text{ m}$ වේ. ජල පෘෂ්ඨයට දරා සිටීය හැකි කෘමියාගේ උපරිම බර වනුයේ (ජලයේ පෘෂ්ඨික ආතතිය $7 \times 10^{-2} \text{ Nm}^{-1}$ වේ.)
 - 1) 8.80×10^{-5} N
- 2) 5.28 ×10⁻⁴ N
- 3) 5.28×10^{-8} N

- 4) 8.80×10^{-9} N
- 5) 2.00 ×10⁻⁴ N

(2003)

42) නයිලෝන් රෙද්දකින් සාදා ඇති කුඩයක ඇති නයිලෝන් කෙඳි අතර තිඩැස්, රූපයේ පෙන්වා ඇති පරිදි ආසන්න වශයෙන් වෘත්තාකාර යැයි සැලකිය හැකිය. මේ හිඩැස්වල විෂ්කම්භය / ද ජලයේ ඝනත්වය d ද නම්, හිඩැස් හරහා ජලය කාන්දුවීම වැළැක්වීම සඳහා ජලයේ පෘෂ්ඨික ආතතියට තිබිය යුතු අවමය වන්නේ (ජලය සහ නයිලෝන් අතර ස්පර්ශ කෝණය ශූනා ලෙස ගන්න)

- 1) $I^2 dg$ 2) $\frac{1}{2} I^2 dg$ 3) $\frac{1}{4} I^2 dg$ 4) $\frac{1}{12} I^2 dg$ 5) $\frac{1}{16} I^2 dg$ (2011 N)
- 43) රූපයේ පෙන්වා ඇති පරිදි සිලින්ඩරාකාර බෝතලයක පතුළ, සහ වීදුරු තහඩුවක් අතර ජල තට්ටුවක් පවතී. බෝතලයේ පතුලේ අරය r වේ. බෝතලය සෙමින් ඉහළට ඔසවන විට, එක්තරා මොහොතක දී ජලය සහ බෝතල් පතුළ අතර ස්පර්ශ කෝණය θ වේ. (රූපය බලන්න) එම මොහොතේ දී බෝතලයේ පතුළ මත ජලයේ පෘෂ්ඨික ආතතිය T නිසා ඇතිවන බලයේ විශාලත්වය වන්නේ,

- 1) $2\pi r T \sin \theta$
- 2) $2\pi r T \cos \theta$
- 3) $\pi r^2 T \sin \theta$

- 4) $\pi r^2 T \cos \theta$
- 5) $4\pi r T \sin\theta$

(2012 N-14)

44) කෝප්පයක ඇති ජල පෘෂ්ඨයක් මතට ගම්මිරිස් කුඩු ස්වල්පයක් ඉස ජල පෘෂ්ඨය පිරිසිදු වියළි ඇඟිලි තුඩකින් ස්පර්ශ කරන ලදි. ඉන්පසු ඇඟිලි තුඩේ සබන් ස්වල්පයක් ගල්වා ඉහත කිුියාවලිය නැවත සිදු කරන ලදි. ඉහත කිුියාවලිවලියේ දී පහත සඳහන් කුමන

5025	ණය දක්මට ඉඩ ඇත ද!	The Property of the Control of the C
	පිරිසිදු වියළි ඇඟිලි තුඩු	සබන් සහිත ඇඟිලි තුඩු
1)	ගම්මිරිස් කුඩු ඇඟිලි තුඩෙන් ඉවතට ගමන් කිරීමට පෙළඹේ	ගම්මිරිස් කුඩු ඇඟිලි තුඩ වටා රොක් වීමට පෙළඹේ
2)	ගම්මිරිස් කුඩු ඇඟිලි තුඩෙන් ඉවතට ගමන් කිරීමට පෙළඹේ	ගම්මිරිස් කුඩු ඇඟිලි තුඩෙන් ඉවතට ගමන් කිරීමට පෙළඹේ
3)	ගම්මිරිස් කුඩු වසාප්තියට කිසිවක් සිදු නොවේ	ගම්මි <mark>රිස් කුඩු</mark> ඇඟිලි තුඩ වටා රොක් වීමට පෙළඹේ
4)	ගම්ම්රිස් කුඩු වසාප්තියට කිසිවක් සිදු නොවේ	ගම්මිරිස් කුඩු ඇඟිලි තුඩෙන් ඉවතට ගමන් කිරීමට පෙළඹේ
5)	ගම්මිරිස් කුඩු ඇඟිලි තුඩ වටා රොක් වීමට පෙළඹේ	ගම්මිරිස් කුඩු ඇඟිලි තුඩ වටා රොක් වීමට පෙළඹේ
The Real Property lies		(2013)

(2013N-31)

A, B සහ C යන වෙනස් දුවයන් තුනක ගිල්වන ලද සර්වසම වීදුරු කේශික නළ තුනක් රූපසටහනේ පෙන්වා ඇත. පිළිවෙළින් මෙම අවස්ථා තුන සඳහා ස්පර්ශ කෝණයන් වන $heta_A, heta_B$ සහ $heta_C$ පිළිබඳ ව පහත සඳහන් කුමක් නිවැරදි ද?

- 2) $\theta_{A} > 90^{\circ}$, $\theta_{B} = 0^{\circ}$, $\theta_{C} < 90^{\circ}$
- 3) $\theta_A < 90^\circ$, $\theta_B = 90^\circ$, $\theta_C > 90^\circ$
- 4) $\theta_A > 90^\circ$, $\theta_B = 90^\circ$, $\theta_C < 90^\circ$
- 5) $\theta_A < 90^\circ$, $\theta_B = 90^\circ$, $\theta_C < 90^\circ$

(20130-44)

- 46) පෘෂ්ඨික ආතති පිළිවෙළින් T_1 , T_2 සහ T_3 වූ ගෝලාකාර දුව පටල තුනක් රූපයේ පෙනෙන පරිදි අනුරූප අරයයන් $R_1=r$, $R_2=2r$ සහ $R_3=3r$ වන පරිදි සමතුලිත ව පවතී. එවිට
 - 1) $T_1 = T_2 = T_3$

3) $\frac{T_1}{6} = \frac{T_2}{4} = T_3$

5) $T_1 = \frac{T_2}{2} = \frac{T_3}{3}$

ජලයේ පෘෂ්ඨික ආතතිය (0.07Nm⁻¹) නිසා සමහර කුඩා කෘමීන්ට 47) ජල පෘෂ්ඨය පහළට තෙරපීම මගින් ජල පෘෂ්ඨ මත ඇවිද යා හැකිය. රූපයෙහි දක්වා ඇති පරිදි කෘමීන්ගේ පතුල් ආසන්න වශයෙන් ගෝලාකාර බව සැලකිය හැකිය. කෘමියකු ජල පෘෂ්ඨයක් මත නිශ්චල ව සිටින අවස්ථාවක, එක් පාදයක් පිහිටන ආකාරය රූපයේ දක්වා ඇත. ජල මට්ටමේ දී ගෝලාකාර පතුලෙහි වෘත්තාකර හරස්කඩෙහි අරය r වේ. කෘමියා ගේ ස්කන්ධය $5.0 \times 10^{-6}\,\mathrm{kg}$ ද $r = 2.5 \times 10^{-5}\,\mathrm{m}$ වේ. කෘමීයාගේ බර උගේ පාද 6 මගින් දරා සිටින්නේ නම්, $\cos \theta$ හි (රූපය බලන්න) අගය ආසන්න වශයෙන්, (π හි අගය 3 ලෙස ගන්න)

1) 0.1

2) 0.2

3) 0.4

4) 0.6

5) 0.8 (2015-22)

03. දුස්සුාච්තාව

කේතුඵලය 10 cm² වන පැතැලි තහඩුවක් ඊට විශාල තහඩුවකින් වෙන් කර ඇත්තේ 1) l mm ඝනකම සහිත ග්ලිසරින් ස්ථරයකිනි. ග්ලිසරින්වල දුස්සුාවතා සංගුණකය 2 kg m s ් නම් තහඩුව $10^{-2} \mathrm{ms}^{-1}$ පුවේගයකින් චලනය වෙමින් තැබීමට අවශා බලය,

1) $2 \times 10^2 \text{ g N}$

2) 2×10^{-2} N 3) 2×10^{-3} g N 4) 2×10^{-3} N

5) $10 \times 10^{-6} \text{ g N}$

(1982)

2) රූපයෙහි AB වලින් වාතය තුළින් නිදහස්ව ගෝලාකාර වැහි බිංදුවක් පහළට ඇති පුවේගය $V,\ t$ කාලයෙහි මුතයක් ලෙස පෙන්වයි. B හිදී වැහි බිංදුවක කුඩා සර්වසම බිංදු V_0 දෙකකට බිඳී යන අතර එම බිංදු දෙකම BC වකුයෙන් පෙන්වා V. ඇති V_1 පුවේගයට අනුව දිගටම පහළ වැටේ. පුස්තාරයේ පෙන්වා ඇති Vo හි අගය,

1) $V_0/8$ ed. 2) $V_0/4$ ed. 3) $V_0/2$ ed. 4) $V_0/2^{\frac{1}{2}}$ ed. 5) $V_0/4^{\frac{1}{4}}$ ed.

(1982)

3) ජලය ඇති ගැඹුරු විලක, ගෝලාකාර තෙල් බින්දුවක් ඉහළට ගමන් කරයි. ටික චේලාවකට පසු එය ${
m V_0}$ ආන්ත පුවේගය ලබා ඉන්පසු සර්වසම කුඩා ගෝලාකාර බින්දු දෙකකට කැඩී යයි. කුඩා බින්දු දෙකම තවදුරටත් ඉහළට ගමන් කරයි නම්, එක එකෙහි අන්ත පුවේගය, 1) $V_0(2^{1/3})$ 2) $V_0(2^{-2/3})$ 3) $V_0(2^{1/3})$ 4) $V_0(2^{2/3})$

රූපයෙහි පෙන්වා ඇති අයුරු භාජනයකට සර්වසම මාන සහිත ඇත්දොර සහ බිහිදොර නල දෙකක් ඇත. කාලය t=0 වන විට භාජනය තුළ ජලයෙහි උස h_0 උස වන අතර නියත දුව මට්ටම් උපකරණයක් ආධාරයෙන් ඉහළ නලය තුළිත් ජලය භාජනයට ගලා එයි. නියත දුව මට්ටම උපකරණය ඉහළ නලයෙහි දෙකෙළවර හරහා ජලය H(H <h0) උසක පීඩනයක් පවත්වා ගනී. h උසෙහි කාලය t සමඟ වීචලනය ලබාදෙනුයේ,

1) 1 2)
$$\frac{r_1}{r_2}$$
 3) $\frac{r_2}{r_1}$ 4) $\left(\frac{r_1}{r_2}\right)^2$ 5) $\left(\frac{r_2}{r_1}\right)^2$ (1984)

දවයක දුස්සාවිතාව නිරවදාව සෙවීම සඳහා කරන ලද පරීකෘණයක දී තිරස්ව තබන ලද 6) සිහින් වීදුරු නලයක් තුළින් එම දුවය අනවරතව ගලා යාමට සලස්වන ලදී. මෙහි දී පහත සඳහන් රාශීන්ගෙන් කුමන රාශිය වඩාත්ම නිරවදයව දූන ගත යුතුව ඇති ද?

1) වීදුරු නළයේ දිග 2) වීදුරු නළයේ අභාන්තර විෂ්කම්භය

3) දවයේ ඝනත්වය

4) නලය දිගේ පීඩන අණුකුමනය 5) දුවය ගලා යැමේ ශීසුතාව

(1985)

දුස්සුාවී දුවයක්, කේෂික බටයක් තුළින් ගලන සිසුතාවය Q සම්බන්ධව කර ඇති පහත 7) සඳහන් පුකාශ සලකා බලන්න.

(A)බටයේ දිග දෙගුණ කිරීමෙන් Q දෙගුණ කළ හැකිය.

(B) බටයේ විෂ්කම්බය දෙගුණ කිරීමෙන් Q දහසය ගුණයකින් වැඩි කළ හැකිය.

(C) බටයේ දිග හා බටය හරහා පීඩන අන්තරය යන දෙකම දෙගුණ කළ විට Q නොවෙනස්ව පවතී.

ඉහත සඳහන් පුකාශවලින්,

1) (A) පමණක් සතා වේ. 2) (B) පමණක් සතා වේ. 3)(C) පමණක් සතා වේ.

4) (B) සහ (C) පමණක් සතා වේ. 5) (A), (B) සහ (C) යන සියල්ලම සතා වේ. (1986)

අරය r හා සනත්වය 2ρ වූ S නම් කුඩා ගෝලාකාර වස්තුවක් සනත්වය ρ වූ L දුස්සුාවී 8) දවයක සිරස්ව පහලට ගමන් කර V ආන්ත පුවේගයක් ලබා ගනී. පහත දක්වෙන පුකාශ සලකා බලන්න.

(A) S හි ඝනත්වය දෙගුණ කළහොත් එය L තුළ 2V ආන්ත පුවේගයකින් ගමන් කරයි.

(B) S හි අරය දෙගුණ කළහොත් එය L තුළ 2V ආන්ත පුවේගයකින් ගමන් කරයි.

(C) L වෙනුවට එයට සමාන දුස්සුාවීතා සංගුණකයකින් යුතු එහෙත් ඝනත්වය 3p වූ දුවයක් තිබුණේ නම් S හි ආන්ත පුවේගයේ විශාලත්වය නොවෙනස් ව පවතී.

ඉහත සඳහන් පුකාශවලින් 1) A පමණක් සතා වේ.

2) B පමණක් සතා වේ. 3) C පමණක් සතා වේ.

4) A හා B පමණක් සතා වේ. 5) B සහ C පමණක් සතා වේ.

(1987)

වෙනස් හරස්කඩ සෙප්තුඵලද සමාන දිග ද ඇති කේෂික බටදෙකක් රූප සටහනේ දක්වා 9) ඇති පරිදි එකිනෙකට සම්බන්ධ කොට ඇත. මෙම පද්ධතිය තිරස්ව තබා ඇති අතර එය තුළින් A සිට C දක්වා අනවරත ලෙස ජලය ගලා යයි. බටය දිගේ ජල පීඩනය (p) වෙනස්වන අයුරු හොඳින් නිරූපනය කරන පුස්තාරය වනුයේ,

රූපයේ පෙන්වා ඇති පරිදි දිග / වූ පටු නලය නියන පීඩන බඳුනකට සම්බන්ධ කොට ඇත්තේ ඕනෑම මොහොතකදී නලයට ඇතුළු වන ජලය එහි විවෘත කෙළවරින් පිටතට යෑමට හරියටම 1s කාලයක් ගත වන පරිදිය. නළයේ දෙකෙළවර අතර පීඩන අන්තරය p ද නලයේ ඇතුළත හරස්කඩ අරය a ද හා ජලයේ දුස්සුාවීතාව η ද නම්,

- 1) $I = \frac{pa}{8\eta}$ 2) $I^2 = \frac{pa^2}{8\eta}$ 3) $I^3 = \frac{pa^2}{8\eta}$ 4) $I = \frac{\pi pa^4}{8\eta}$ 5) $I^4 = \frac{\pi pa^4}{8\eta}$ (1990)
- පහත දක්වා ඇති භෞතික රාශී යුගල් අතරින් එක හා සමාන මාන ඇත්තේ කුමන 11) යුගලයකටද?
 - 1) කාර්යය හා කුමෙතාව වා පුත්හාබලය හා විකිුයාව 3) යං මාපාංකය හා පීඩනය
 - 4) දුස්සාවිතා සංගුණකය හා පෘෂ්ඨික ආතතිය

5) බලය හා ගමාතාව (1992)

12) රූපයේ පෙන්වා ඇති අයුරු පිළිවෙලින් දිග 1, 21 හා අරයයන් a, a/2 වූ සිහින් බට දෙකකින් එකම සිසුතාවයක් සහිතව ජලය ගලායයි. බට දෙක ජල පෘෂ්ඨයේ සිට පිළිවෙලින් \mathbf{h}_1 , \mathbf{h}_2 ගැඹුරෙන් පිහිටා ඇත්නම් $\frac{\mathbf{h}_1}{\mathbf{h}}$ අනුපාතය විය යුත්තේ,

1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 3) $\frac{1}{8}$ 4) $\frac{1}{16}$

13) ගැඹුරු මුහුදු පත්ලෙන් නිදහස් වූ වායු බුබුලක් ඉහළට ගමන් කරනු ලැබේ. පහත දී ඇති පුස්තාර අතුරේ වායු බුබුලේ වේගය (v) කාලය (t) සමඟ විචලනය වීම ඉතාමත් හොඳින් නිරූපණය වන්නේ කවර පුස්තාරයෙන් ද?

- පටු නලයක් තුළ දුස්සුාවි දුවයක අනවරත පුවාහයේ පුවාහ ශීසුතාව සම්බන්ධව පහත 14) දැක්වෙන පුකාශවලින් සතා නොවනුයේ කුමක් ද?
 - 1) පුවාහ ශීසුතාව නලයේ දෙකෙළවර අතර පීඩන වෙනසට අනුලෝම සමානුපාතික වේ.
 - 2) පුවාහ ශීසුතාව නලයේ විෂ්කම්භයේ හතරවන බලයට අනුලෝම වශයෙන් සමානුපාතික
 - 3) පුවාහ ශීඝුතාව දුවයේ දුස්සුාවිතාව සංගුණකයට පුතිලෝම වශයෙන් සමානුපාතික වේ.
 - 4) පුවාහ ශීඝුතාව නලයේ දිගට පුතිලෝම වශයෙන් සමානුපාතික වේ.

5) පුවාහ ශීඝතාව නලය හරහා පීඩන අනුකුමණයෙන් ස්වායත්ත වේ.

- අරය a වු ගෝලයක් දුස්සුාවිතා සංගුණකය η_1 සහ ඝනත්මය d_1 වූ තරලයක් තුළ පහළට 15) වැටෙන විට ν₀ ආන්ත පුවේගයක් ලබා ගනී. එම ගෝලය දුස්සුාවිතා සංගුණකය η₂ සහ සනත්වය \mathbf{d}_2 වූ වෙනත් තරලයක් තුළ ඉහළට නැගීමේ දී ද එම \mathbf{v}_0 ආන්ත පුවේගයම ලබා ගනී. තරල දෙකෙහි සනත්වය අතර වෙනස, (d_2-d_1) අගය සමානුපාතික වන්නේ
 - 1) $\frac{(\eta_2 + \eta_1)v_0}{a^2}$
- 2) $\frac{(\eta_2 \eta_1)\nu_0}{2^2}$
- 3) $\frac{(\eta_2 + \eta_1)v_0}{r^3}$

- 4) $\frac{(\eta_2 \eta_1)\nu_0}{a^3}$
- $5) \frac{(\eta_2 \eta_1)a^2}{v_0}$

(1996)

Scanned by CamScanner

5) (2002)

Scanned by CamScanner

31) විශාල පිහිනුම් කටාකයක ජලය තුළ ඇති සෙල්ලම් තුවක්කුවකකින් අරය a වූ ඊයම් බෝලයක් රූපයේ පෙන්වා ඇති පරිදි විදිනු ලැබේ. ජලයේ සහ ඊයම්වල සනත්ව පිළිවෙළින් ρ_w සහ ρ_{pb} වන අතර ජලයේ උස්සුාවීතාව η වේ. එක්තරා මොහොතක දී බෝලයේ පුවේගයෙහි x සහ y සංරචකයන් පිළිවෙළින් υ_x සහ υ_y වේ නම් එම මොහොතක දී අනුරූප ත්වරණ සංරචකයන්ගේ විශාලත්ව වනුයේ,

(2012 N-44)

11 ඒකකය –පදාර්ථ හා විකිරණ

01 තාප විකිරණය

- 01) උණුසුම් ඝන ගෝලයක් එහි අරයට වඩා ඉතා විශාල අරයකින් යුත් සම කේන්දීය ගෝලාකාර කබොලකින් ආවරණය කර ඇත. මෙම ගෝල දෙක අතර අවකාශය රික්තයක් නම් එම රික්තය තුළ තබන ලද කුඩා වස්තුවක් මගින් අවශෝෂණය කර ගනු ලබන විකිරණ පුමාණය රදා පවතිනුයේ,
 - (A) ඝන ගෝලයෙහි පෘෂ්ඨයේ ස්වාභාවය සහ එහි වර්ගඵලය මතය.
 - (B) ගෝලාකාර කබොලේ ඇතුළු පෘෂ්ඨයෙහි ස්වභාවය සහ එහි වර්ගඵලය මතය.
 - (C) සන ගෝලයෙහි උෂ්ණත්වය සහ එහි තාප සන්නායකතාව මත ය. ඉහත සදහන් පුකාශවලින්,
 - 1) (A) සහ (B) පමණක් සතා වේ.
- 2) (B) සහ (C) පමණක් සතා වේ
- 3) (A) සහ (C) පමණක් සතා වේ
- 4) (A) (B) සහ (C) සියල්ලම සතා වේ
- 5) (A) (B) සහ (C) සියල්ල අසතා වේ.

(1984)

- 02) තාප විකිරණය පිළිබඳව පහත සඳහන් පුකාශනවලින් නිවැරදි නොවනුයේ කුමක් ද?
 - 1) තාප විකිරණය ස්වභාවයෙන් විද්යුත් චුම්බක වේ.
 - 2) විකිරණය හොඳින් අවශෝෂණය කරන වස්තුවක් හොඳ විකිරකයක් ද වේ.
 - 3) ත මෝස් ප්ලාස්කු තුළ විකිරණයේ හානිය වීදුරු බිත්තිවල රීදි ආලේප කිරීමෙන් අඩු කරගතු ලැබේ.
 - 4) විකිරණයෙන් පමණක් එක් ස්ථානයක සිට තවත් ස්ථානයකට තාපය සංකුමණය කළ නොහැකි ය.
 - 5) හිරු එළිය ඇති උෂ්ණ ස්ථාන සඳහා සුදු ඇඳුම් නිර්දේශ කරනුයේ ඒවා තාප විකිරණය (1995)වැඩි වශයෙන් අවශෝෂණය නොකරන නිසාය.
- 3) කෘෂ්ණ වස්තුවකින් වීමෝචනය කරන විකිරණයේ Iතීවුතාවය λ තරංග ආයාමය සමඟ වෙනස් වන ආකාරය රූපයේ දක්වේ. තෘෂ්ණ වස්තුවේ උෂ්ණත්වය වැඩිවන විට I_m උපරිම තීවුතාව,

- 1) $I_{\rm m}$ වැඩි වන අතර එහි පිහිටීම දිගු තරංග ආයාම දෙසට විස්ථාපනය වේ.
- 2) $I_{\rm m}$ වැඩි වන අතර එහි පිහිටීම කෙටී තරංග ආයාම දෙසට විස්ථාපනය වේ.
- 3) $I_{\rm m}$ අඩු වන අතර එහි පිහිටීම දිගු තරංග ආයාම දෙසට විස්ථාපනය වේ.
- 4) $I_{
 m m}$ අඩු වන අරත එහි පිහිටීම කෙටී තරංග ආයාම දෙසට විස්ථාපනය වේ.
- 5) $I_{\rm m}$ නියතව පවතින අතර එහි පිහිටීම කෙටි තරංග ආයාම දෙසට විස්ථාපනය වේ.(1997)
- 4) ඒකක වර්ගඵලයකට E ශීසුතාවයකින් සූර්යයා ශක්තිය විකිරණය කරයි. සූර්යයා කෘෂ්ණ වස්තුවක් ලෙස උපකල්පනය කළහොත් එහි පෘෂ්ඨික උෂ්ණත්වය වන්නේ (σ = ස්ටෙපාන් නියතය)

1)
$$\left(\frac{E}{\sigma}\right)^{\frac{1}{4}}$$

$$(2) \left(\frac{E}{\sigma}\right)^{\frac{1}{2}}$$

3)
$$\frac{E}{\sigma}$$

4)
$$\left(\frac{E}{\sigma}\right)^2$$

1)
$$\left(\frac{E}{\sigma}\right)^{\frac{1}{4}}$$
 2) $\left(\frac{E}{\sigma}\right)^{\frac{1}{2}}$ 3) $\frac{E}{\sigma}$ 4) $\left(\frac{E}{\sigma}\right)^{2}$ 5) $\left(\frac{E}{\sigma}\right)^{4}$

ආරම්භයේ දී පිළිවෙළින් 80° C සහ කාමර උෂ්ණත්වයේ (30° C) 5) පවතින A සහ B කුට්ටි දෙක, රේචනය කර පිටතින් පරවරණය කරන ලද කාමර උෂ්ණත්වයේ පවතින සන්නායක කුටිය තුළ පරිවාවරක තන්තු දෙකකින් එල්ලා ඇත. පද්ධතිය සමතුලිත අවස්ථාවට පැමිණීමට පෙර පහත සඳහන් පුකාශවලින් කුමක් නිවැරදි ද?

- 1) A හි, B හි සහ කුටියේ උෂ්ණත්ව නොවෙනස් ව පවතී.
- 2) කුටිය, කාමර උෂ්ණත්වයේ පවතින අතර A සහ B හි උෂ්ණත්ව වෙනස් වේ.
- 3) කුට්යේ සහ B හි උෂ්ණත්ව වැඩි වන නමුත් A හි උෂ්ණත්වය අඩු වේ.
- 4) කුටියේ උෂ්ණත්වය වැඩි වන නමුත් A සහ B හි උෂ්ණත්ව නොවෙනස්ව පවතී.
- 5) A සහ B හි උෂ්ණත්ව අඩුවන නමුත් කුටියේ උෂ්ණත්වය වැඩි වේ.

(2000)

5) J

(1999)

6)

ප්ලාන්ක් නියතය (h) හි ඒකකය වනුයේ

3) එය වස්තුවේ පෘෂ්ඨයෙහි විමෝචකතාවට සමානුපාතික ය.

4) එය පරිසර උෂ්ණත්වය මත රඳා පවතී.

5) එය වස්තුවේ තාප ධාරිතාව මත රඳා නොපවතී.

(2012 N-15)

17) අරය r සහ දිග I = 2r වූ සිලින්ඩරාකාර තඹ කුට්ටියක් උෂ්ණත්වය T හි දී කෘෂ්ණ චස්තුවක් ලෙස ශක්තිය විකිරණය කරයි. මෙම තඹ කුට්ටිය එම r අරය ම සහිත එක සමාන වූ N තැටි සංඛාාවකට කපා වෙන් කළ විට ඉහත උෂ්ණත්වයේ දී විකිරණ ශක්තිය විමෝචනය කෙරෙන සීසුතාව කවර ගුණයකින් වැඩිවේද?

1)
$$\frac{(N+3)}{3}$$
 2) $\frac{(N+2)}{3}$ 3) $\frac{(N+1)}{3}$ 4) $\frac{N}{3}$ 5) N (2014-37)

02 පුකාශ විදසුත් ආචරණය

- 1) පුකාශ විද්යුත් ආවරණය පිළිබඳව කර ඇති පහත සඳහන් සලකා බලන්න.
 - A) පතනය වන ආලෝකයේ තීවුතාව සමඟ විමෝචනය වන ඉලෙක්ටෝන සංඛ්යාව වැඩි
 - B) පතනය වන ආලෝකයේ තීවුතාව සමඟ වීමෝචනය වන ඉලෙක්ටුෝනවල උපරිම පුවේගය වැඩි වේ.
 - C) පතනය වන ආලෝකයේ තරංග ආයාමය සමඟ වීමෝචනය වන ඉලෙක්ටෝනවල උපරිම පුවේගය වැඩි වේ. ඉහත පුකාශවලින්,
 - 1) A පමණක් සතා වේ.
- 2) B පමණක් සතා වේ.
- 3) C පමණක් සතා වේ.
- 4) A සහ B පමණක් සතා වේ.
- 5) A සහ C පමණක් සතා වේ.

(1998)

2) අාලෝක කදම්බයක් පුකාශ සංවේදී පෘෂ්ඨයක් මතට පතනය වේ. පතන කදම්බයෙහි තීවුතාව වෙනස් නොකරන්නේ නම් තත්පරයක දී මුක්තවන ඉලෙක්ටුෝන සංඛ ${
m N}_{
m s}$ පතන ආලෝකයෙහි සංඛාාතය f සමඟ විචලනය වන ආකාරය හොඳින් ම නිරූපණය කරනු ලබන්නේ පහත කවර පුස්තාරයකින් ද? (මෙහි \mathbf{f}_0 මගින් පුකාශ සංවේදී දුවායෙහි දේහලිය සංඛ්යාතය නිරූපණය වේ.)

- 3) එක්තරා ලෝහයක් මත තරංග ආයාමය λ වූ ඒකවර්ණ ආලෝකය පතනය වූ විට ඉලෙක්ටුෝන විමෝචනය වේ. h ප්ලාස්ක් නියතය සහ c ආලෝකයේ පුවේගය වේ. පහත පුකාශ සලකා බලන්න.
 - (A)ලෝහයෙන් වීමෝචනය වන ඉලෙක්ටුෝනවල චාලක ශක්තිය hcλ වඩා කුඩා වේ.
 - (B)ලෝහයෙන් විමෝචනය වන ඉලෙක්ටෝනවල චාලක ශක්තිය ලෝහය සාදා ඇති දුවා මත රඳා නොපවතී.
 - (C) ඉලෙක්ටෝන විමෝචනය වීමේ λ මත රඳා පවතී ඉහත පුකාශ අතරෙන්
 - 1) (A) පමණක් සතාවේ.

- 2) (A) සහ (B) පමණක් සතා වේ.
- 3) (A) සහ (C) පමණක් සතා වේ.
- 4) (B) සහ (C) පමණක් සතා වේ.
- 5) (A), (B) සහ (C) සියල්ල ම සතා වේ.

(2001)

- පුකාශ සංවේදී පෘෂ්ඨයක් මතට ඒකවර්ණ ආලෝක කදම්බයක් පතිත වේ. කදම්බයෙහි තීවුතාව වැඩි කළ විට,
 - 1) ඉලෙක්ටෝන විමෝචනය වන සීඝුතාව වැඩි වේ.
 - 2) ඉලෙක්ටුෝන වීමෝචනය වන සීඝුතාව අඩු වේ.
 - 3) විමෝචනය වන ඉලෙක්ටුෝන වල ශක්තිය වැඩි වේ.
 - 4) විමෝචනය වන ඉලෙක්ටුෝන වල ශක්තිය අඩු වේ.
 - 5) ඉලෙක්ටුෝන වීමෝචනය වන සීඝුතාව සහ ශක්තිය වෙනස් නොවේ.

(2002)

- ලෝහ තහඩුවක් යම් කිසි සංඛානතයකින් යුත් ආලෝක කදම්බයක් මගින් ආලෝකමන් 5) කරන ලදී. පහත සඳහන් ඒවායින් කුමක් මගින් ලෝහ පෘෂ්ඨයෙන් ඉලෙක්ටුෝන වීමෝචනය වේ ද නැද්ද යන්න නිර්ණය කරයි ද?
 - 1) ආලෝකයේ තීවුතාව 3) තහඩුවේ පෘෂ්ඨික වර්ගඵලය
- 2) ආලෝකයට නිරාවරණය කර ඇති කාලසීමාව 4) ලෝහ වර්ගය
- 5) පතන පුෝටෝනවල වේගය

(2003)

- ෆෝටෝන සහ ඉලෙක්ටුෝන පිළිබඳව පහත දක්වෙන කුමන පිළිතුරෙහි අසන නොරතුරු අඩංගු වේ ද? ෆෝටෝන රික්තයක් තුළ දී වෙනස් වේගවලින් ගමන් ඉලෙක්ටෝන රික්තයක් තුළ දී වෙනස් වේගවලින් ගමන් කළ නොහැකිය. කළ හැකිය. වෙනස් ශක්තීන් තිබිය හැකි ය. 2) වෙනස් ශක්තීන් තිබිය හැකිය. විදපුත් ක්ෂේතුවලින් උත්තුම කළ හැකිය. විදපුත් සහ වුම්බක ක්ෂේතුවලින් උත්කුම කළ හැකි ය. 4) අංශු සහ තරංග සහ හැසිරීමට හැකිය. අංශු සහ තරංග ලෙස හැසිරීමට හැකිය. 5) දුවාවෙලින් ඉලෙක්ටුෝන විමෝචනය දුවාවලින් ෆෝටෝන වීමෝචනය කරවීමට කරවීමට හැකිය. (2004)පුකාශ සංවේදී පෘෂ්ඨයක් $\lambda_1,\ \lambda_2$ හා λ_3 $(\lambda_1>\lambda_2>\lambda_3)$ තරංග ආයාමයක් සහිත ආලෝකයෙන් වෙන් වෙන්ව පුදීපනය කරනු ලැබේ. අවස්ථා තුනේදීම ආලෝකයේ තීවුතාවය (තත්පරයකට පතනය වන පෝටෝන සංඛ්‍යාව) එකම අගයක පවත්වා ගනු ලැබේ. පුකාශ ඉලෙක්ටුෝනවල ධාරා – චෝල්ටීයතා ලාක්ෂණික වඩාත් ම හොඳින් නිරූපනය කරනු ලබන්නේ, තරංග ආයාමය 5000~Aවූ ආලෝකය, කාර්ය ශීතය $2.28~{
 m eV}$ වන සෝඩියම් පෘෂ්ඨයක් 8) මතට පතිත වේ. වීමෝචනය වන පුකාශ ඉලෙක්ටුෝනවල උපරිම චාලක ශක්තිය වන්නේ $(hc = 12.4 \times 10^3 \text{ eV } A)$ 1) 0.03 eV 3) 0.60 eV 4) 1.30 eV 2) 0.20 eV 5) 2.00 eV (2006) 9) පුකාශ විදාපුත් ආචරණය පිළිබඳ පහත පුකාශ සලකා බලන්න. A) ආලෝක ශක්ති පොදි ලෙස උපකල්පනය කර මෙම ආචරණය විස්තර කළ හැකිය. B) දී ඇති ඒකවර්ණ පතන ආලෝකයක් සඳහා විමෝචනය වන ඉලෙක්ටෝනවල ශක්තිය දුවාසය මත රඳා නොපවතී. C) පතන ආලෝකයේ තීවුතාව මත ඉලෙක්ටෝන වීමෝචනය වීමේ ශීසුතාව රඳා පවතී. ඉහත පුකාශ අතුරෙන් 1) A සහ B පමණක් සතා වේ. 2) B සහ C පමණක් සතා වේ. 3) A සහ C පමණක් සතා වේ. 4) A, B සහ C යන සියල්ලම සතා වේ. 5) A, B සහ C යන සියල්ලම අසතා වේ. (2007)එක්තරා පුකාශ කැතෝඩයක් මතට පතිත වන නිල් සහ රතු ආලෝකය පුකාශ ඉලෙක්ටෝන නිපදවයි. පහත සඳහන් කුමන පුකාශය සතා ද? 1) වීමෝචනය වූ පුකාශ ඉලෙක්ටුෝනවල උපරිම චාලක ශක්තිය නිල් ආලෝකය සඳහා වඩා වැඩිය. 2) නැවතුම් විභවය රතු ආලෝකය සඳහා වඩා වැඩිය. 3) පුකාශ කැතෝඩ දුවායෙහි කාර්ය ශිතය තිල් ආලෝකය සඳහා වඩා වැඩිය. 4) වීමෝචනය වන පුකාශ ඉලෙක්ටෝන ගණන නිල් ආලෝකය සඳහා සෑමවිටම වැඩිය. 5) නැවතුම් විභවය වර්ණ දෙකට ම එකමය. ලෝහ තැටියක් එක්තරා සංඛානතයකින් යුක්ත වූ ආලෝකය මගින් පුදීපනය කරනු ලැබේ.
- 11) තැටියෙන් ඉලෙක්ටෝන විමෝචනය වන්නේ ද හෝ නොවන්නේ ද යන්න නිර්ණය වන්නේ පහත සඳහන් කුමක් මගින් ද? 2) තැටිය ආලෝකයට නිරාවරණය වී ඇති කාලය
 - l) ආලෝකයේ තීවුතාව
 - 3) තැටිය සාදා ඇති දුවනයේ තාප සන්නායකතාව 4) තැටියේ වර්ගඵලය
 - 5) තැටිය සාදා ඇති දුවාය (2009)

12) එක්තරා $2.2~{
m eV}$ කාර්ය ශිතයක් ඇත. ප්ලාන්ක් නියනය $6.6 \times 10^{-34}~{
m J~s}$, ආලෝකයේ වේගය $3 \times 10^8 \; \mathrm{ms^{-1}}$ සහ $1 \mathrm{eV} = 1.6 \times 10^{-19} \; \mathrm{J} \; \mathrm{s}$ වේ. මෙම දුවසය සුදු ආලෝකයට ති්රාවරණය කළහොත් පුකාශ විදුපුත් ආවරණයට දායක වනු ඇත්තේ තරංග ආයාමය,

1) 562 nm ට අඩු ආලෝකය පමණකි.

- 2) 562 nm ට වැඩි ආලෝකය පමණකි.
- 3) 400 nm ට අඩු ආලෝකය පමණකි.
- 4) 400 nm ට වැඩි ආලෝකය පමණකි.
- 5) 900 nm ට අඩු ආලෝකය පමණකි.

පතින විකිරණයේ සංඛානතය (f) සමග 13) ලෝහයකින් විමෝචනය වන පුකාශ ඉලෙක්ටුෝනවල උපරිම චාලක ශක්තියේ (K_{max}) විචලනය පුස්තාරයේ පෙන්වා ඇත. ලෝහයේ කාර්ය ශිුතය වන්නේ,

- 1) 6.0 eV
- 2) 4.0 eV
- 3) 2.5 eV
- 4) 2.0 eV 5) 1.0 eV
- 14) පුකාශ ඉලෙක්ටුෝන වීමෝචනය සඳහා දේහලී සංඛාාතය f_0 වන පුකාශ සංවේදී පෘෂ්ඨයක් මතට සංඛාාතය f වන විදාුත් චුම්බක විකිරණ පතිත වේ. පහත දක්වා ඇති කුමක් අසතාා වේ ද?

1) $f < f_0$ වූ විට පුකාශ ඉලෙක්ටුෝන විමෝචනය නොවේ.

2) f_0 , පුකාශ සංවේදී පෘෂ්ඨයේ දුවායේ ලාක්ෂණික ගුණාංගයක් වේ.

3) $f > f_0$ වූ විට, පතිත විකිරණයේ <mark>තීවු</mark>තාවය වැඩි වන විට පුකාශ ඉලෙක්ටුෝන වීමෝචනය වන සීඝුතාවය ද වැඩි වේ.

4) නැවතුම් විභවය f^2 ට අනුලෝමව සමානුපාතික වේ.

5) නැවතුම් විභවය පතිත විකිරණයේ තීවුතාවයෙන් ස්වායත්ත වේ.

(2013-3)

15) ${f A}$ සහ ${f B}$ ලෝහ දෙකකට අනුරූප කාර්ය ශිුත පිළිවෙළින් ${f W}_1$ සහ ${f W}_2$ වන අතර ${f W}_1>{f W}_2$ වේ. සංඛානය f වන ඒකවර්ණ ආලෝක කම්බයක් භාවිතා කර A සහ B මගින් සාදන ලද පෘෂ්ඨ දෙකක් වෙන වෙනම පුදීපනය කරන ලදි. A සහ B ලෝහ මගින් සෑදු පෘෂ්ඨ සඳහා, පතිත ආලෝකයේ සංඛානතය (f) සමග විමෝචනය වන පුකාශ ඉලෙක්ටෝනයන්ගේ උපරිම චාලක ශක්තියේ (K. E_{max}) විචලනය වඩාත් ම නිවැරදිව දක්වෙන්නේ පහත කුමන පුස්තාරයෙන් ද?

- A, B සහ C යනු පුකාශ විදුසුත් වීමෝචනය සඳහා දේහලීය තරංග ආයාමයන් පිළිචෙලින් 16) $\lambda_{A}=0.3 \mu m$ ල $\lambda_{B}=0.28 \mu m$ සහ $\lambda_{C}=0.20 \mu m$ වූ ලෝහ තුනකි. සංඛානය 1.2×10¹⁵Hz වූ ෆෝටෝන, එක් එක් ලෝහය මත පතනය වේ. පුකාශ ඉලෙක්ටුෝන වීමෝචනය වන්නේ (රික්තයේ දී ආලෝකයේ වේගය $3 imes 10^8 \, \mathrm{ms}^{-1}$).
 - 1) A මගින් පමණි.

2) B මගින් පමණි.

3) C මගින් පමණි.

- 4) A සහ B මගින් පමණි.
- 5) A , B සහ C සියල්ලම මගිනි.

(2015-16)

03 අංශු හා තරංග

- x කිරණ පිළිබඳ පහත සඳහන් පුකාශ අතුරින් සතා නොවන්නේ කුමක් ද? 1)
 - රික්තයේ දී x කිරණ ආලෝකයේ වේගයෙන් පුචාරණය වේ.
 - 2) x කිරණ ස්එටික දැලිසක් මගින් විවර්තනය කළ හැකිය.
 - 3) x කිරණ මගින් පුකාශ විද්යුත් ආවරණය ඇති කළ හැකිය.
 - 4) විද්පුත් හෝ චුම්බක ක්ෂේතු මගින් x කිරණ උත්කුමය කළ හැක.
 - 5) x කිරණ මගින් වායුවක් අයනීකරණය කළ හැකිය.

(1997)

- පෝටෝනයක් පරමාණුක නාෂ්ටියක් (X) වෙතට එල්ල 2) රූපයේ පෙන්වා ඇති පථයන්ගෙන් පෝටෝනයේ ගමන් මග විය නො හැකිද?

 - 2) Q
 - 3) R 4) S
 - 5) T

(2001)

වාලක ශක්තිය K සහ ඩි බොග්ලී තරංග ආයාමය වන නිදහස් අංශුවක් ඒක්තරා පෙදෙසකට 3) ඇතුළු වූ වීට එහි විභව ශක්තිය V බවට පත් වේ. අංශුවේ නව ඩි බොග්ලි තරංග ආයාමය දෙනු ලබන්නේ,

1)
$$\lambda \sqrt{\frac{V}{V-K}}$$
 2) $\lambda \sqrt{\frac{K}{K-V}}$ 3) $\lambda \left(1+\frac{K}{V}\right)$ 4) $\lambda \left(1-\frac{K}{V}\right)$ 5) $\lambda \sqrt{\frac{K}{V+K}}$ (2010)

- 100 keV ඉලෙක්ටෝන කදම්බයක් ලෝහ ඉලක්කයක් තුළ පැවතුනු විට එය, 4)
 - 1) β ් අංශු නිපදවයි
- 2) β ් අංශු නිපදවයි
- 3) α අංශු නිපදවයි.

- 4) නියුටෝන නිපදවයි.
- 5) X කිරණ නිපදවයි.

- (2011 N)
- 5) ස්කන්ධය $m_{
 m e}$, වන ඉලකේටෝනයක් විභව අන්තරය හරහා ත්වරණය කළ විට එහි ඩී -බොග්ලි තරංග ආයාමය - λ වේ. එම විභව අන්තරයම හරහා ස්කන්ධය $m_{
 m p}$ වන පුෝටෝනයක් ත්වරණය කළ විට ඒ හා සංඝතව ඩී – බොග්ලි තරංග ආයාමය වන්නේ,
- 2) $\lambda \sqrt{\frac{m_e}{m_e}}$ 3) $\lambda \frac{m_e}{m_p}$ 4) $\lambda \frac{m_p}{m_e}$ 5) $\frac{\lambda m_e^2}{m_p^2}$

- (2011 N)

04 විකිරණශීලීතාව

- Χ සහ γ කිරණ සඳහා කර ඇති පහත සඳහන් පුකාශ අතුරින් අසතා වන්නේ කුමක් ද? 1)
 - 1) γ කිරණවලට, X කිරණවලට වඩා කුඩා තරංග අොයාම ඇත.
 - 2) γ කිරණ පෝටෝන ආරෝපිත වී ඇති අතර X කිරණ පෝටෝන උදාසීනය
 - 3) γ කිරණවලට, X කිරණවලට වඩා විනිවිද යාමේ හැකියාවක් ඇත.
 - 4) γ කිරණ සහ X කිරණ දෙවර්ගයම රික්තකයක් තුළ දී ආලෝකයේ වේගයෙන්ම ගමන් කරයි.
 - 5) γ කිරණ සහ X කිරණ දෙවර්ගයම විවර්තනය කළ හැකිය.

(1998)

විකිරණශිලි නියැදියක අඩංගු A මුලදුවසයක නස්වී ස්ථායි B මුලදුවසයක නස්වී බවට 2) ක්ෂය වේ. කාලය (t) සමඟ සෑදෙන B හි පරමාණු සංඛ $\mathfrak B$ හි විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ,

3)	පහත දක්වා ඇති කුමන ගුණයක් α, β හා γ යන විකිරණ වර්ග තුනටම පොදු ගුණයක් නොවන්නේද? 1) ශක්තිය රැගෙන යාම 2) අංශු ස්වභාවය මෙන්ම කරංග ස්වභාව ද පෙන්වීම. 3) වාතය අයනීකරණය කිරීමේ හැකියාව 4) පරමාණුවක නාස්ටියෙන් විමෝචනය වීම. 5) ආරෝපණයක් තිබීම.
4)	යුරෙනියම් වල සමස්ථානිකයක් වන $\frac{239}{92}$ U, βඅංශුවක් විමෝචනය කරමින් සාංශ වේ. සෑදෙන නව නාංශ්ටියේ ස්කන්ධ කුමාංකය හා පරමාණුක කුමාංකය පහත පුතිචාර අතුරින් කුමකින් නිවැරදිව දෙනු ලබයිද? ස්කන්ධ කුමාංකය (A) පරමාණුක කුමාංකය (Z) 1) 235 90 2) 240 92 3) 239 91 4) 239 93 5) 239 90 (1999)
5)	ගයිගර් ගණකයක් (Geiger Counter) භාවිත කිරීමෙන් a) α - අංශු අනාවරණය කළ හැකිය. b) γ - කිරණ අනාවරණය කළ හැකි c) නියුටෝන අනාවරණය කළ හැකිය. ඉහත පුකාශවලින් 1) a පමණක් සතා වේ. 2) b පමණක් සතා වේ. 3) c පමණක් සතා වේ. 4) a හා b පමණක් සතා වේ. 5) a, b හා c යන සියල්ලම සතා වේ. (2000)
6)	$^{\Lambda}_{26}$ X නම් වූ විකිරණශීලි මූල දූවාසයක් α - විමෝචන කිහිපයකට පසු $^{206}_{82}$ X නම් වූ ස්ථායි මූලදූවාසයකට ක්ෂය වේ. A හි අගය 1) 206 2) 208 3) 210 4) 212 5) 214 (2000)
7)	විකිරණශීලී $^{234}_{90}$ Th නාෂ්ටිය β^- විමෝචන දෙකකින් සහ α විමෝචනයකින් පසුව සැදෙන නාෂ්ටියේ ඇත්තේ 1) පෝටෝන 86 සහ නියුටෝන 140 කි. 2) පෝටෝන 86 සහ නියුටෝන 140 කි. 4) පෝටෝන 90 සහ නියුටෝන 140 කි. 5) පෝටෝන 96 සහ නියුටෝන 142 කි. (2001)
8)	කාබන් - 14 දිනැයුම ආධාරයෙන් පොසිලයක වයස අවුරුදු 72000 බව සොයා ගන්නා ලදී. ¹⁴ C හි අර්ධ-ආයු කාලය අවුරුදු 6000 නම්, <u>පොසිලයේ අඩංගු වන ¹⁴C පුමාණය</u> ජීවත්වන පටකයන්ගේ පවතින ¹⁴ C පුමාණය යන අනුපාතය සමාන වනුයේ
	1) $\frac{1}{2}$ 2) $\frac{1}{2^3}$ 3) $\frac{1}{2^5}$ 4) $\frac{1}{2^{12}}$ 5) $\frac{1}{2^{16}}$ (2001)
9)	$_{Z}^{A}X$ විකිරණශීලි නාෂ්ටියක් α - අංශුවක් සහ ඊට අනුගාමිකව γ කිරණයක් විමෝචනය කරමින සෑය වේ. එමඟින් සෑදුනු දුහිතෘ නාෂ්ටියට තිබෙන ස්කන්ධ අංකය සහ පරමාණුක අංක පිළිවෙලින්, 1) $A-5$ සහ $Z-2$ වේ. 2) $A-4$ සහ $Z-2$ වේ. 3) $A-5$ සහ $Z-3$ වේ. 4) $A-4$ සහ $Z-3$ වේ. 5) $A-4$ සහ Z වේ. (2002)

-										COM CO	MARINE S						THE REAL PROPERTY.	11616
25)	නාෂ්ටි කිහිපයක බඳන ශක්තීන් පහත දක්වෙන වගුවෙන් පෙන්නුම කරයි.																	
	නාෂ්ටිය				4 F	Ie	20	²⁰ Ne		40 20 Ca		60 Ni		238 92 U				
	බඳන ශක්තිය (MeV) 28.3							160.6 342.1				526.8 1802.0						
	ඉහත සඳහන් නස්ටීවලින් වඩාත් ම ස්ථායි නාෂ්ටිය කුමක්ද? 1) ${}^4_{,1}{\rm He}$ 2) ${}^{20}_{,10}{\rm Ne}$ 3) ${}^{40}_{,20}{\rm Ca}$ 4) ${}^{60}_{,28}{\rm Ni}$ 5) ${}^{238}_{,92}{\rm U}$																	
	1) ⁴ ₂ He 2				$\frac{20}{10}$ N		3) 20 Ca			4) 60 Ni				5) ²³⁸ ₉₂ U (2015-31)				
														(2015)1)		
පිළිතුරු																		
09 ඒකකය ඉලෙක්ටුෝනික විදනව																		
1) අර්ධ සන්නායක සන්ධි දියෝඩ																		
(01) 4	(02)	3	(03)	3	(04)	3	(05)	1	(06)	5	(07)	3	(08)	4	(09)	3	(10)	2
(11) 2 (21) 4		2	(13)	3,4	(14)	3	(15)	2	(16)	Z	(17)	3	(18)	2	(19)	3	(20)	#
2)																		
(01) 3 (11) 4	3 (02) 4 (12)												(08)	3	(09)	2	(10)	1
	සංග																	
3)			-															
(01)	1 (02) 4	(03)	1	(04)	1	(05)	1	(06)	5								
4)	තාර්	කික (ද්වාර															
(01) 3	3 (02) 5	(03)	1	(04)	3	(05)	5	(06)	1	(07)	5	(08)	2	(09)	5	(10)	1
(11) 3	3 (12)		(13)		(14)		(15)		(16)	4	(17)	1	(18)	5		5	(20)	5
(21) 4																		
10 8	10 චීකකය පදාර්ථයේ යාන්තික ගුණ																	
10 02	ມເມເລ	061	COGU	s (G)	ചവി) ယွ	90											
1)	පුතන	ස්ථත	ව															
(01)	1	(02			(03)	5		4)	2	((05) 1		(06) 2		(07) 5	
(08) (15)	4 2	(09) (16)			(10) (17)	2 3		11)	1 3		12) 5 19) 3		(13) (20)			(14	The same of	
(22) (29)	2	(23)	1		(24)	5	(2	25)	4	(2	26) 2		(27)	1		(28) 5	
(36)	3	(37)			(31) (38)	5 2		32)	1 2		33) 1 40) 4	K	(34)	5		(35) 1	
										18.	1 43 136							

Train Make

2)	පෘත්රී	රික ආත	තිය											
(01) (08) (15) (22) (29) (36) (43)	4 3 2 3 3 1 1	(02) (09) (16) (23) (30) (37) (44)	4 2 2 2 2 3 4 4	(03) (10) (17) (24) (31) (38) (45)	3 4 3 1 1 2 3	(04) (11) (18) (25) (32) (39) (46)	2 5 1 3 5 4 5	(05) (12) (19) (26) (33) (40) (47)	5 2 4 4 4 3 5	(06) (13) (20) (27) (34) (41)	5 2 5 3 2 1	(07) (14) (21) (28) (35) (42)	4 2 5 1 4 4	
3)	දුස්සුාවිතාව													
(01) (08) (15) (22) (29) (36)	2 3 1 2 2 1	(02) (09) (16) (23) (30)	5 1 3 5 5	(03) (10) (17) (24) (31)	2 2 4 1 1	(04) (11) (18) (25) (32)	4 3 1 2 3	(05) (12) (19) (26) (33)	4 5 1 2 2	(06) (13) (20) (27) (34)	2 1 1 4	(07) (14) (21) (28) (35)	4 5 all 3 5	
11 ඒකකය පදාර්ථ හා විකිරණ														
1)	1) තාප විකිරණය													
(01) (8) (15)	3 1 4	(02) (9) (16)	4 5 2	(03) (10)	2 5	(04) (11)	1 5	(05) (12)	2 4,5	(6) (13)	3 2	(7) (14)	1 1	
2)	2) පුකාශ විදසුත් ආචරණය													
(01) (08) (15)	1 2 2	(02) (09) (16)	4 3 4	(03) (10)	1 1	(04) (11)	1 5	(05) (12)	4	(06) (13)	3 3	(07) (14)	4 4	
3)	3) අංශු හා තරංග													
(01)	4	(02)	4	(03)	2	(04)	5	(05)	2					
4)	විකිරණශිලිතාව													
(01) (08) (15) (22)	2 4 4 2	(02) (09) (16) (23)	2 2 4 3	(03) (10) (17) (24)	5 3 1 5	(04) (11) (18) (25)	4 2 2 4	(05) (12) (19)	4, 5 2 1	(06) (13) (20)	5 1 3	(07) (14) (21)		