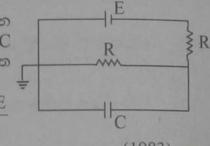
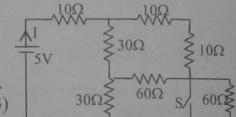

|     | පටුන                                 | පිටුව |
|-----|--------------------------------------|-------|
| 01) | ඕම් නියමය හා පුතිරෝධ පද්ධති          | 04    |
| 02) | විද් <u>ප</u> ුත් සමෙතාව හා තාපන ඵලය | 19    |
| 03) | කර්චොප් නියම හා කෝෂ පද්ධති           | 27    |
| 04) | වීට්ස්ටන් සේතු හා මීටර් සේතු         | 35    |
| 05) | සළ දඟර මීටර                          | 38    |
| 06) | විභවමානය                             | 41    |
|     | පිළිතුරු                             | 48    |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |
|     |                                      |       |


## 01 ඕම් නියමය හා පුතිරෝධ පද්ධති

එක් එක් පුතිරෝධය R වූ සර්වසම පුතිරෝධ 10 ක් රූපයේ 1) පෙනෙන අයුරු සම්බන්ධ කිරීමෙන් විද්යුත් ජාලයක් සාදා ඇත. එක් පැත්තක P නම් මධා ලක්ෂායෙන්, ජාලයට ඇතුල් වන ධාරාව විරුද්ධ පැත්තේ Q නම් මධා ලක්ෂායෙන් පිට වේ. P හා Q අතර සමක පුතිරෝධය



- 1) R/2
- 2) R
- 3) 2R
- 4) 3R
- 5) 4R


පෙන්වා ඇති පරිපථයේ කෝෂයේ විද්යුත් ගාමක බලය E වන 2) අතර එහි අභාන්තර පුතිරෝධය නොගිනිය හැක. C ධාරිතුකයේ පිළිවෙලින් වම් හා දකුණු අත පැත්තේ තහඩු මත ඇති ආරෝපණ



- 1) 0, 0
- 2)  $0, \frac{-CE}{2}$  3)  $\frac{CE}{2}, \frac{-CE}{2}$
- 4) 0. CE
- 5) CE, CE

(1983)

3) පෙන්වා ඇති පරිපථයේ කෝෂයෙහි අභාවන්තර පුතිරෝධය තොගිණිය යුතු තරම් වේ. S ස්වීචචිය වැසු විට පරිපථයෙහි ධාරාව I



- 1) 0.1 A @D.
- 2) 0.2 A වේ.
- 3) 0.3 A වේ.

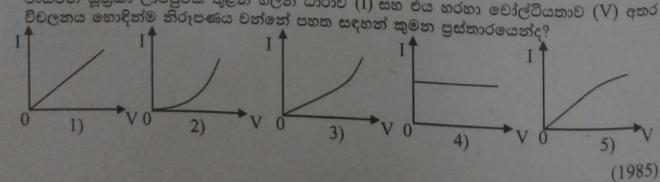
- 4) 0.4 A @D.
- 5) 0.5 A වේ.
- (1983)
- 4) පහත දක්වෙන සමීකරණයේ  ${
  m V}_1$  සහ  ${
  m V}_2$  මගින් චෝල්ටියතාවයන් දක්වෙන අතර  ${
  m I}_1$  මගින් ධාරාවක් නිරූපණය වේ.

$$V_1 = K_1 I_1 + K_2 V_2$$

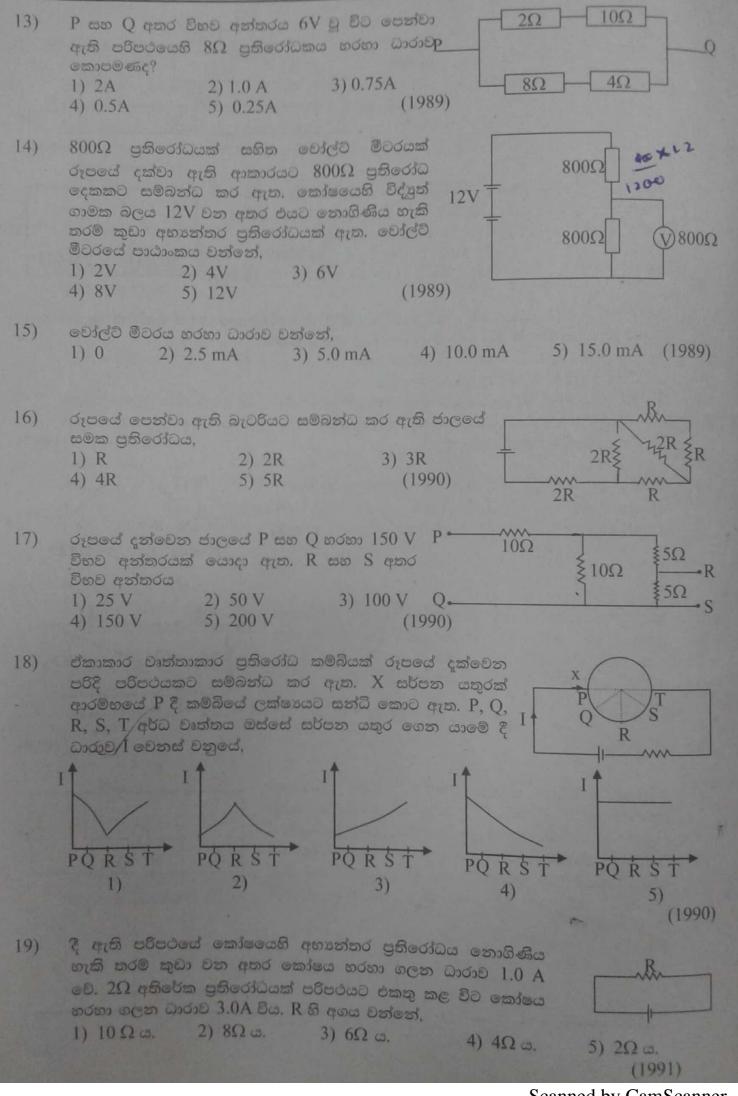
K1 / K2 අනුපාතයට

- 1) පුතිරෝධයේ ඒකක ඇත. 2) ධාරාවේ ඒකක ඇත. 3) වෝල්ටියතාවේ ඒකක ඇත.
- 4) ක්ෂමතාවයේ ඒකක ඇත. 5) මාන නොමැත.

- (1984)
- රූපයේ පෙන්වා ඇති සැකැස්මෙහි, අරය r වලින් යුත් වෘත්තය සහ AB 5) විෂ්කම්භය යන දෙකම ඒකක දිගක පුතිරෝධය p වන ඒකාකාර කම්බියකින් සාදා ඇත. A සහ O කේන්දුය අතර මනිනු ලබන පුතිරෝධය වන්නේ.




- 2)  $\left(\frac{\pi+2}{4\pi}\right)$ rp
- 3)  $\left(\frac{\pi+4}{2\pi}\right)$ rp


5)  $\left(\frac{\pi+2}{2\pi}\right)$ rp

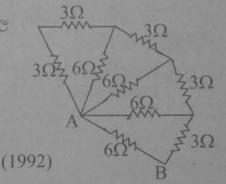
(1984)

ටංස්ටන් සූතිකා ලාම්පුවක් තුළින් ගලන ධාරාව (I) සහ එය හරහා චෝල්ටියතාව (V) අතර 6)

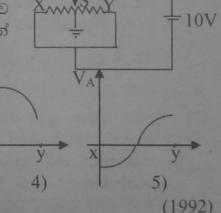


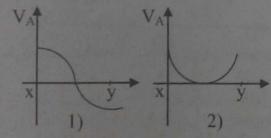
 $6\Omega$ පෙන්වා ඇති ජාලයෙහි AB අතර සමක 7) 125 පුතිරෝධය වන්නේ, 3)  $6\Omega$ 2)  $4\Omega$  $1) 2\Omega$ 5) 10Ω 4) 8Ω B A (1985)120V දෙන ලද පරිපථයෙහි 5000Ω පුතිරෝධය හරහා විභව 8) අන්තරය, පුතිරෝධය 5000 $\Omega$  වූ චෝල්ට්මීටරයක් මගින් මනිනු ලැබේ. චෝල්ට්මීටරයෙහි කියවීම වනුයේ, 3) 60V 2) 40V  $2500\Omega$ 1) 15V (1986)5) 120V 4) 80V දිග  $\ell$  වූ සිලින්ඩරාකාර තඹ දණ්ඩකින් දිග  $2\ell$  වූ සිලින්ඩරාකාර අළුත් දණ්ඩක් නැවත සාදා 9) ගනු ලැබේ. අඑත් දණ්ඩේ විද්යුත් පුතිරෝධය මුල් දණ්ඩේ 1) විද්යුත් පුතිරෝධයමෙන් දෙගුණයක් වේ. 2) විද්යුත් පුතිරෝධයෙන් බාගයක් වේ. 3) විද්යුත් පුතිරෝධයමෙන් සිව් ගුණයක් වේ. 4) විද්යුත් පුතිරෝධයමෙන් හතරෙන් එකක් වේ. (1987)5) විද්යුත් පුතිරෝධයට සමාන වේ.  $10\Omega$ 100Ω රූපයේ දක්වෙන ජාලයේ AB හරහා සමක පුතිරෝධය 10) 3) 100Ω මව්. 2) 10Ω වේ. 1) ශූනා වේ. (1988)5) 1210Ω වේ. 4) 1000Ω @5.  $100\Omega$  $1000\Omega$  $2\Omega$  පුතිරෝධක හයක් නොගිණීය හැකි අභාවන්තර 11) පුතිරෝධයක් ඇති 6V කෝෂයකට රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කර ඇත. X සහ Y අතර විභව අන්තරය වන්නේ, 1)  $0 \omega$ . 2)  $\frac{1}{6} V \omega$ . 3)  $\frac{1}{2} V \omega$ . 4) 1V a. (1988)5) 2V a. ඒකාකාර කම්බියක විචලා දිගක් දෙන ලද පරිපථයේ 12) දුක්වෙන පරිදි P සහ Q අගු අතර සම්බන්ධ කරනු ලැබේ. ධාරා නියාමකය භාවිතයෙන් (A) ඇමීටරයේ පාඨාංකය නියනව තබා ගෙන, කම්බියේ සෑම (/) දිගකම, අනුරූප චෝල්ට්මීටරය පාඨාංකය (V) සටහන් කර ගනු ලැබේ. / සමග V හි වෙනස්වීම වඩාත්ම හොඳින් නිරූපණය වනුයේ, (1988)



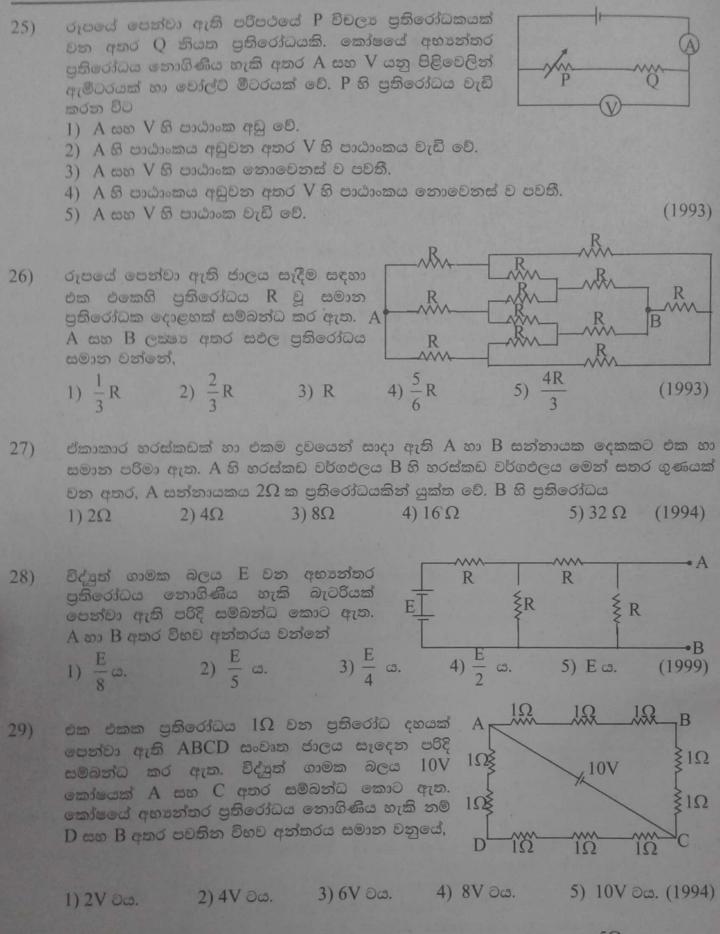

20) විදුලි ජනනකට ජවය සපයන විද්යුත් පරිපථයක, ආවරණය නොකරන ලද කම්බි මත වසා සිටින X. Y සහ Z යන කුරුල්ලන් තුන්දෙනෙකු රූපයේ දක්වේ. සෑහෙන තරමක අධි චෝල්ටීයතාවයකින් යුත් බැටරියකින් ජවය සැපයේ. රූපයේ S යනු

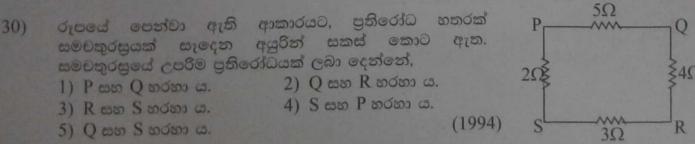



පහත දක්වෙන පුකාශ සලකා බලන්න.


- A) ස්වීච්චිය විවෘත ව ඇති විට X කුරුල්ලාට විදුලි පහරක් වැදීමට ඉඩ ඇත.
- B) ස්වීච්චිය වැසූ විට Y කුරුල්ලාට විදුලි පහරක් වැදීමට ඉඩ ඇත.
- C) ස්වීච්චිය වැසූ විට Z කුරුල්ලාට විදුලි පහරක් වැදීමට ඉඩ ඇත. ඉහත පුකාශ වලින්,
- 1) A පමණක් සතා වේ. 2) B පමණක් සතා වේ. 3) C පමණක් සතා වේ.
- 4) A සහ B පමණක් සතා වේ. 5) B සහ C පමණක් සතා වේ.

- $12\Omega$  බැගින් වූ සමාන පුතිරෝධ තුනක් සපයා ඇත. එයින් එකක් හෝ වැඩි ගණනක් 21) සම්බන්ධ කිරීමෙන් ලබාගත නොහැකි පුතිරෝධයේ අගය වන්නේ,
  - $1) 36\Omega$
- $2) 24\Omega$
- $3) 6\Omega$
- 4)  $4\Omega$
- 5)  $2\Omega$  (1992) •
- රූපයේ පෙන්වා ඇති ජාලයෙහි A සහ B ලක්ෂා අතර සඵල 22) පුතිරෝධය වනුයේ,
  - 1) 1Ω 岛
  - 2) 2Ω 局
  - 3) 3Ω 岛
  - 4) 4Ω 岛
  - 5) 6Ω 高





23) රූපයේ දක්වෙන පරිපථයේ XY යනු මධානය භූගත කොට ඇති ධාරා නියාමකයකි. S සර්පණ යතුර පුතිරෝධයේ සම්පූර්ණ දිග ඔස්සේ X සිට දක්වා Y වලනය කළ විට, පොළවට සාපේකෂව A හි විභවය  $(V_A)$  වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය වන්නේ කමකින්ද?

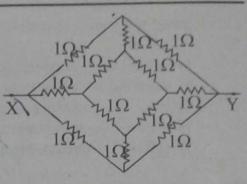




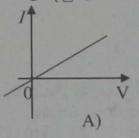
- 3)
- තුඩු තුනක් සහිත සාමානා පේනු හිසක (3 pin plug) භූගත වන තුඩ අනෙක් දෙකට වඩා 24) මහතය, මෙසේ සකස් කර ඇත්තේ, 1) භූගත වන තුඩට් අනෙක් තුඩු දෙකට වඩා අධික පුතිරෝධයක් තිබිය යුතු නිසාය.
  - 2) භූගත වන තුඩට වැඩි තාප ධාරිකාවක් තිබිය යුතු නිසාය.
  - .3) භූගත වන තුඩ කේවෙනියට සිරවන විට අනෙක් තුඩු දෙක සඳහා වූ සිදුරු විවෘත කිරීමටය.
  - 4) භූගත කිරීම පළමුව සිදු කල යුතු නිසාය.
  - 5) භූගත සම්බන්ධයට අඩු පුතිරෝධයක් ලබා දීමය.



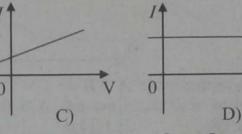



31) එක එකෙහි පුතිරෝධය lΩ වන පුතිරෝධක දෙළහක් රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කොට ඇත. XY අතර සමක පුතිරෝධයේ අගය වන්නේ,




- $2)\frac{3}{4}\Omega$
- 3) 1Ω

- 4)  $\frac{4}{3}\Omega$
- 5)  $\frac{3}{2}\Omega$

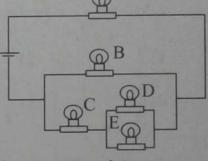

(1995)



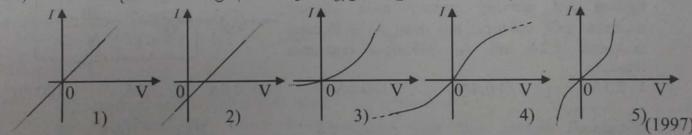
32) පහත පෙනුනුම් කරන ධාරාව (I) හා විභව අන්තරය (V) අතර වකුවලින් ඕම් නියමය පිළිබදිනු ලබන්නේ,







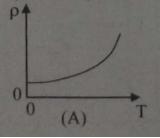

- 1) A පමණි.
- 2) A සහ C පමණි.
- 3) A, B සහ C පමණි.

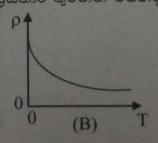

- 4) A, C සහ D පමණි.
- 5) කිසිවක් නොවේ.

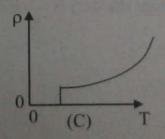
- A (1996)
- 33) රූපයේ දක්වෙන පරිපථයේ ඇති ආලෝක බල්බ සර්වසම වේ. වැඩි ම ආලෝකය ලබා දෙන බල්බය ද අඩු ම ආලෝකය ලබා දෙන බල්බය ද පිළිවෙලින්
  - 1) A සහ D වේ.
- 2) E සහ A වේ.
- 3) A සහ B වේ.
- 4) B සහ E වේ.
- 5) C සහ D වේ.

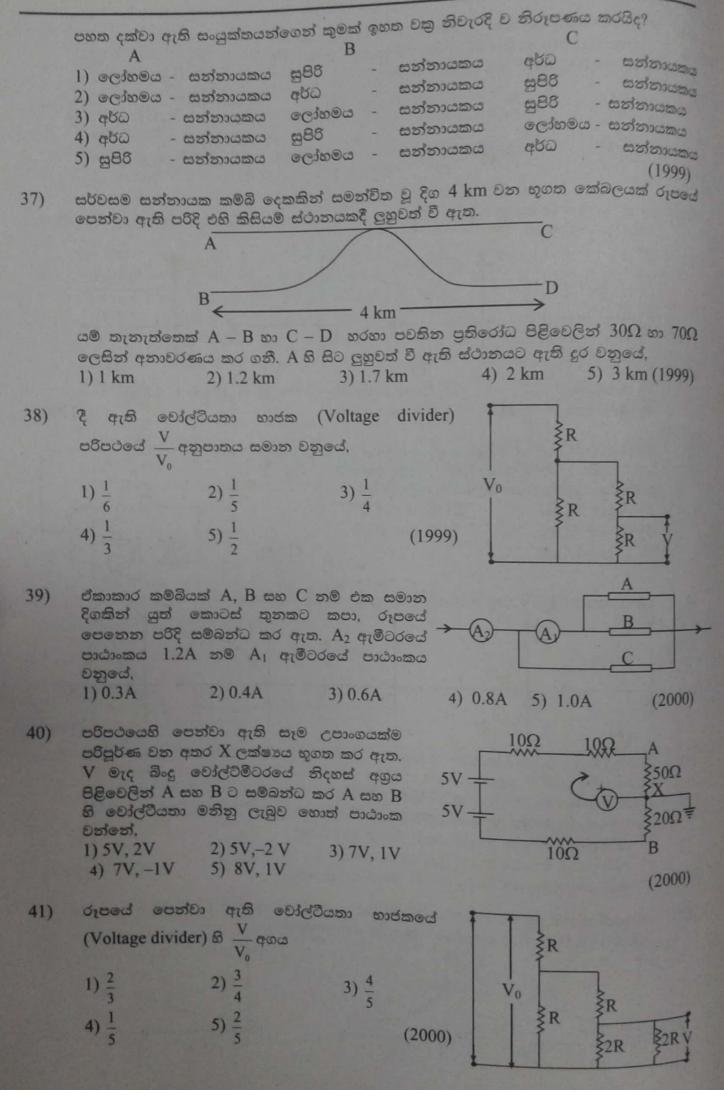
(1996)



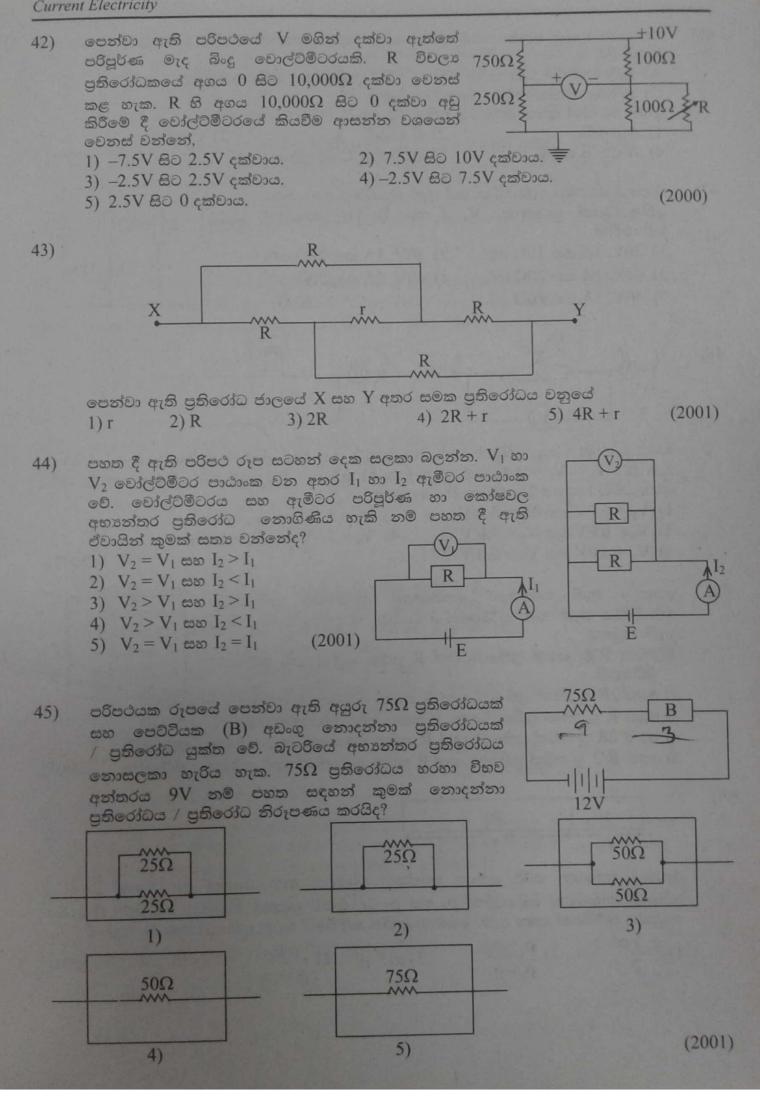

(34) පහත සඳහන් I-V වකු අතරින් කුමක් සූතිකා විදුල් බල්බයක් සඳහා ගැලපේද?





- 35) විදහාගාරයක පරීක්ෂණාත්මක සැකසුමක විදුලි ආම්පන්න සම්බන්ධ කිරීම සඳහා පහත ඒවායෙන් වඩාත් ම සුදුසු වන්නේ,
  - 1) පරිවරණය කරන ලද කෙටි, සිහින් කම්බි වේ.
  - 2) පරිවරණය කරන ලද කෙටී, මහත කම්බි වේ.
  - 3) පරිවරණය නොකරන ලද කෙටි, සිහින් කම්බි වේ.
  - 4) පරිවරණය නොකරන ලද දිග, මහත කම්බි වේ.
  - 5) පරිවරණය නොකරන ලද කෙටි, මහත කම්බි වේ.


(1998)

36) දුවාසන් තුනක් සඳහා විද්යූත් පුතිරෝධකතාව (ρ), උෂ්ණත්වය (T) සමග විචලනය වන ආකාරය A, B හා C යන පුස්තාර තුනෙන් පෙන්නුම් කරයි.









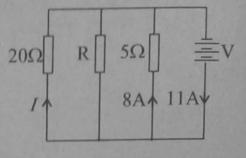

Scanned by CamScanner



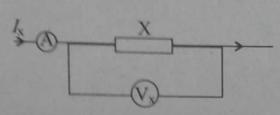
- එක සමාන සෘජු ලෝහ කම්බි තුනක් පහත සඳහන් වෙනස්කම්වලට වෙන වෙනම භාජනය 46) කටන ලදී.
  - A) ඇදීමෙන් දින වැඩි කරන ලදී. B) උෂ්ණත්වය වැඩි කරන ලදී.
  - C) කම්බිය පරිකාලිකාවක් ආකාරයට ඔතන ලදී. ඉහත ඒවායින් කුමක් කම්බියේ පුතිරෝධය වැඩි කිරීමට හේතු වේද?
  - 1) A 20 46.

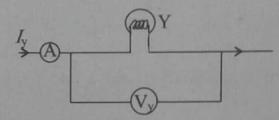
2) B පමණි.

3) C 50 56.


- 4) A com B com and.
- 5) A, B සහ C සියල්ලම.

(2003)


- රූපයේ පෙන්වා ඇති පරිපථයේ ඇති බැටරියේ අභාගන්තර 47) පුතිරෝධයක් නොමැත. V, I සහ R වල අගයයන් පිළිවෙලින්

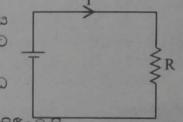

  - 1) 20V,  $1A \cos 10\Omega$  60. 2) 20V,  $1A \cos 20\Omega$  60.
  - 3) 40V, 1A com 20Ω co. 4) 40V, 2A com 20Ω co.
  - 5) 40V, 2A com 40Ω co.

(2003)



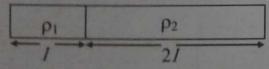






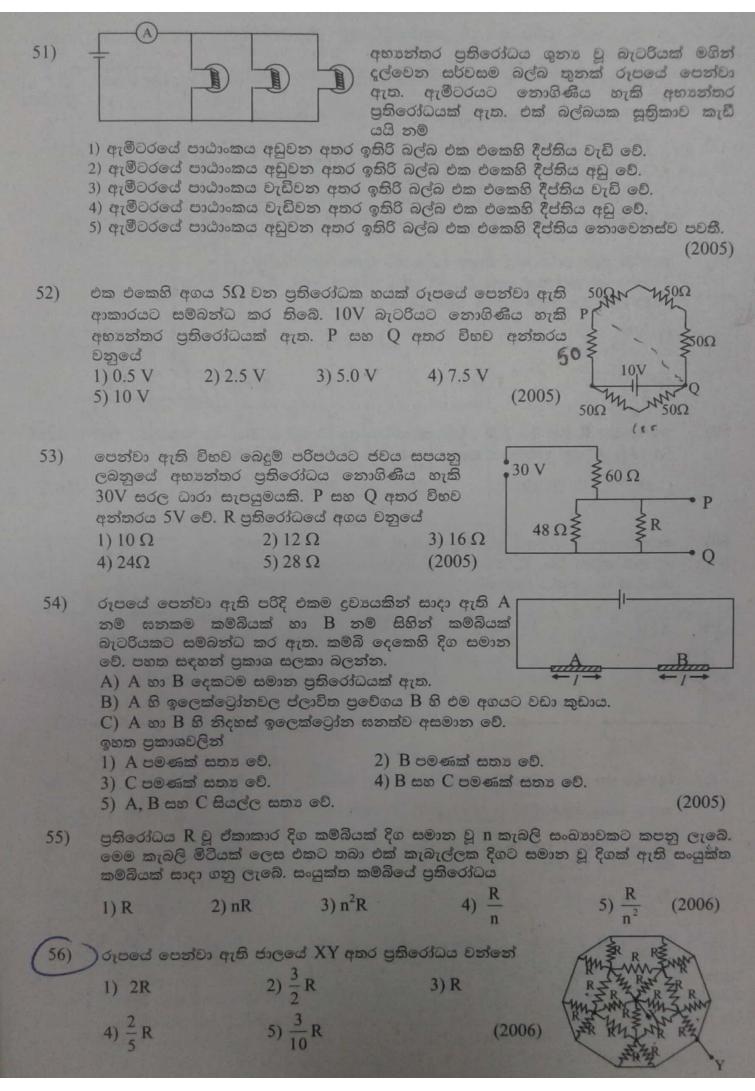

ඉහත රූපවල X යනු පුතිරෝධයක් වන අතර Y යනු විදුලි පන්දම් බල්බයකි.  $I_{\rm x}=I_{\rm y}=2~{
m mA}$ වන විට  ${
m V_X=V_y=0.3V}$  වේ.  $I_{
m X}=I_{
m V}=40~{
m mA}$  වන විට බල්බයේ සූතිකාව දැල්වේ. එවිට චෝල්ට්මීටර දෙකෙහි පාඨාංක විය හැක්කේ,

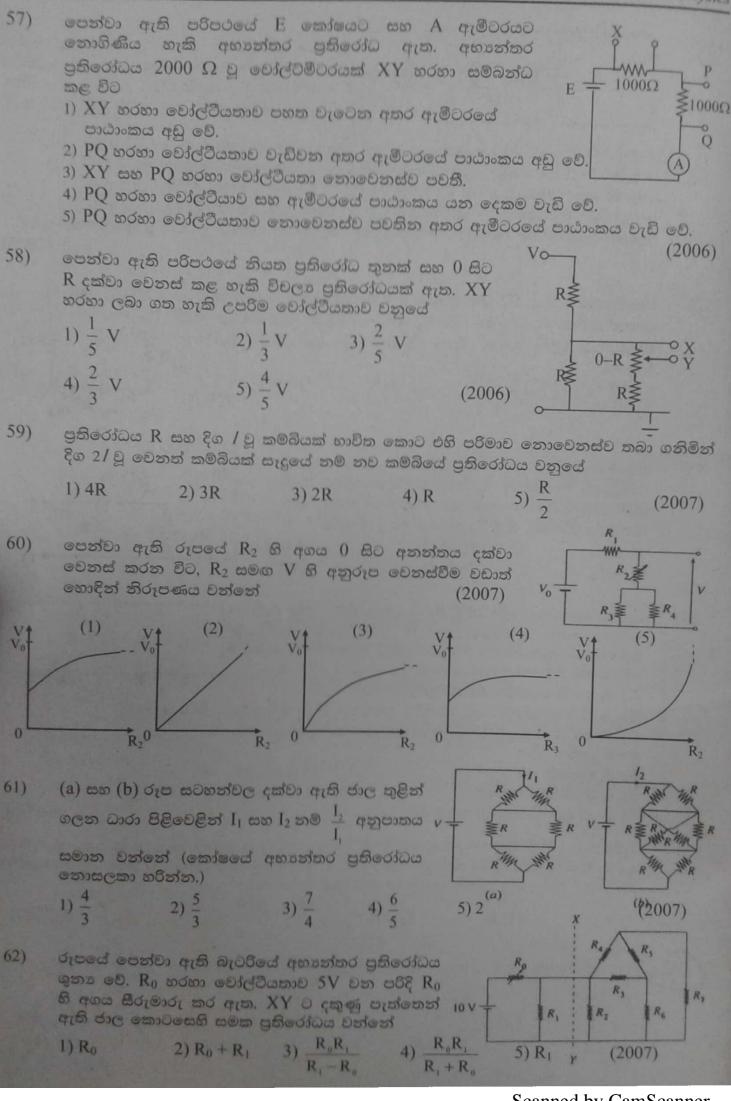
- 1)  $V_x = 6.0 \text{V}$  www  $V_y = 3.0 \text{ V}$  2)  $V_x = 6.0 \text{V}$  www  $V_y = 6.0 \text{ V}$
- 3)  $V_x = 6.0 \text{V}$  case  $V_y = 9.0 \text{ V}$  4)  $V_x = 3.0 \text{V}$  case  $V_y = 9.0 \text{ V}$
- 5)  $V_x = 3.0 \text{V} \Leftrightarrow V_y = 6.0 \text{ V}$


(2003)

49) පෙන්වා ඇති පරිපථයේ කෝෂයෙහි අභාන්තර පුතිරෝධය නොගිණීය හැකි නම පරිපථයේ I ධාරාව 3I දක්වා වැඩි කිරීමට හැකි වනුයේ




- 1) අගය R වූ තවත් පුතිරෝධයක් R සමඟ ශේුණිගතව සම්බන්ධ කිරීමෙනි.
- 2) අගය 2R වූ තවත් පුතිරෝධයක් R සමඟ ශේුණිගතව සම්බන්ධ කිරීමෙනි.
- 3) අගය R වූ තවත් පුතිරෝධයක් R සමඟ සමාන්තරගතව සම්බන්ධ කිරීමෙනි.
- 4) අගය 2R වූ තවත් පුතිරෝධයක් R සමඟ සමාන්තරගතව සම්බන්ධ කිරීමෙනි.
- 5) අගය R/2 වූ තවත් පුතිරෝධයක් R සමඟ සමාන්තරගතව සම්බන්ධ කිරීමෙනි. (2004)

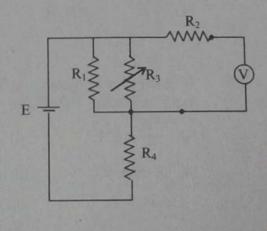

50)



රූපයේ දක්වෙන පරිදි සමාන හරස්කඩ වර්ගඵල ඇති එහෙත් දිග / සහ 2/ වූ ද පුතිරෝධකතාවෙන් පිළිවෙලින් ρ1 සහ ρ2 වූද කම්බි දෙකක් කෙළවර සම්බන්ධ කිරීමෙන් සංයුක්ත කම්බියක් සාදා ඇත. මෙම සංයුක්ත කම්බියේ සඵල පුතිරෝධකතාව වනුයේ,

- 2)  $\rho_1 \rho_2$ P1 + P2
- 3)  $\rho_1 + \rho_2$  4)  $\frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$  5)  $\frac{\rho_1 + 2\rho_2}{3}$ 
  - (2004)



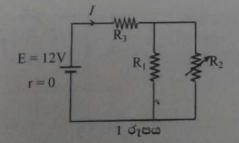


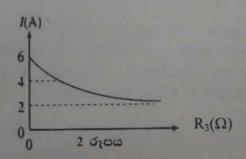

- $1\Omega$  පුතිරෝධක හතරක් සම්බන්ධ කිරීම මගින් ලබා ගත හැකි අඩුම පුතිරෝධ අගයන් දෙක 63) වන්නේ
  - 1) 0.25 Ω to 1.0 Ω
- 2) 0.25 Ω ∞ 1.33 Ω
- 3) 1 Ω 800 2 Ω

- 4) 1.2 Ω to 2.66 Ω
- 5) 1.33 Ω 80 2.5 Ω

- (2008)
- පෙන්වා ඇති පරිපථයේ E මගින් නිරූපණය වන්නේ අභෳන්තර පුතිරෝධය නොගිණීය 64) හැකි තරම් වූ කෝෂයක වී.ගා.බ.වේ.  $R_1$ ,  $R_2$  සහ  $R_4$  පරිමිත පුතිරෝධ වේ. V යනු  $R_3$  වීචලා පුතිරෝධය හරහා සම්බන්ධ කර ඇති පරිපූර්ණ වෝල්ට්මීටරයකි.  $R_3$  හි අගය ශූනායේ සිට අනන්තය දක්වා වෙනස් වන්නේ නම්,  $R_3=0$  සහ  $R_3 o\infty$  වූ විට V හි කියවීම නිවැරදි ලෙස පුරෝකථනය කරනු ලබන්නේ පහත සඳහන් කුමන පද මගින් ද?

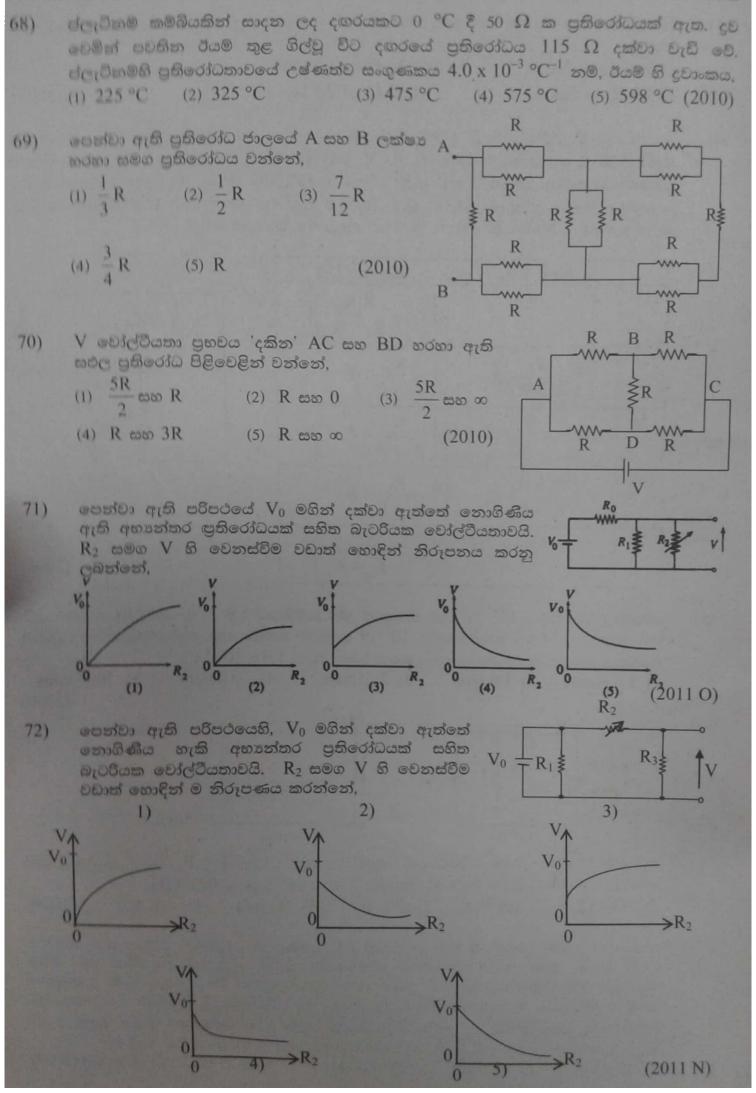
|     | R <sub>3</sub> =0 විට                        | R <sub>3</sub> →∞ විට                            |
|-----|----------------------------------------------|--------------------------------------------------|
| (1) | 0                                            | $\left(R_4 + \frac{R_1 R_2}{R_1 + R_2}\right) E$ |
| (2) | $\left(\frac{R_1}{R_1 + R_4}\right)E$        | $\left(\frac{R_4}{R_1 + R_4}\right) E$           |
| (3) | 0                                            | $\left(\frac{R_1}{R_1 + R_4}\right) E$           |
| (4) | $\left(\frac{R_1 + R_2}{R_1 + R_4}\right) E$ | $\left(\frac{R_1}{R_1 + R_4}\right) E$           |
| (5) | 0                                            | $\left(R_1 + \frac{R_4 R_2}{R_4 + R_2}\right) E$ |





(2008)

හරස්කඩ වර්ගඵලය  $10^{-7}~\mathrm{m}^2$  වන ඒකාකාර තඹ කම්බියක්  $1.6~\mathrm{A}$  ක ධාරාවක් රැගෙන යයි. 65) තඹ  $1 \ \mathrm{m}^3$  ක නිදහස් ඉලෙක්ටෝන  $10^{29}$  ක් ඇත්නම් කම්බිය තුළ ඉලෙක්ටෝනවල ප්ලාවිත පුවේගය :ඉලෙක්ටුෝනයක ආරෝපණයේ ව්ශාලත්වය  $1.6 imes 10^{-19} \, \mathrm{C}$ ) 1) 1.0 mms<sup>-1</sup> 2) 1.6 mms<sup>-1</sup> 3) 2.0 mms<sup>-1</sup> 4) 10.0 mms<sup>-1</sup>

- 5) 20. 0 mms<sup>-1</sup> (2009)


66)



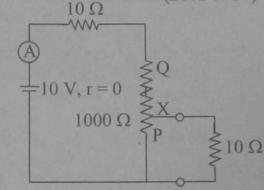


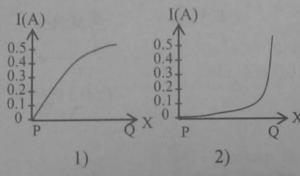
1 රූපයෙහ් දක්වා ඇති පරිපථයෙහි බැටරිය හරහා ධාරාව  $(I),\ R_3$  සමග විචලනය වන ආකාරය 2 රූපයේ දක්වා ඇත.  $R_1$  සහ  $R_2$  හි අගයයන් වනුයේ පිළිවෙලින්

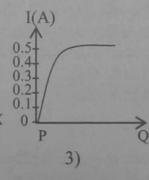
- 1)  $1\Omega$ ,  $2\Omega$  2)  $1\Omega$ ,  $3\Omega$  3)  $2\Omega$ ,  $4\Omega$
- 4)  $2\Omega$ ,  $6\Omega$
- 5)  $4\Omega$ ,  $8\Omega$
- (2009)
- පොළොව යටින් දිවෙන 6 km ක් දිගැති AB කේබලයක්, (cable) එකිනෙකින් වෙන් ව 67) පිහිටි එකම මාන සහිත සමාන්තර සන්නායක කම්බි දෙකකින් සමන්විත වේ. මෙම කේබලය තුළ එක් ලක්ෂායක දී කම්බි දෙක අතර ලුහුවත් වීමක් සිදුව ඇත. කේබලයේ මෙම දෝෂ සහිත ස්ථානය සෙවීමට සිදු කරන ලද පරීක්ෂාවකදී කේබලයේ A කෙළවරේ කම්බි දෙක අතර මනින ලද පුතිරෝධය  $3~\mathrm{k}\Omega$  ලෙස ද, B කෙළවරේ දී එම මිනුම  $5~\mathrm{k}\Omega$ ලෙස ද සොයා ගන්නා ලදී. දෝෂ ස්ථානයට කේබලයේ A කෙළවර සිට ඇති දුර 1) 1.80 km 2) 2.25 km 3) 3.60 km 4) 3.75 km 5) 4.50 km (2009)

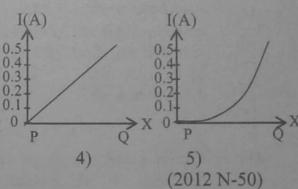


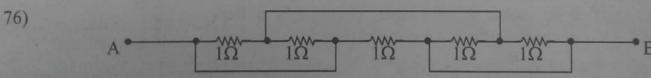
Scanned by CamScanner


- 73) තඹ කම්බි දෙකක පරිමාව එකම වන නමුත් 2 වන කම්බිය 1 වන කම්බියට වඩා 20% කින් දිග වැඩි ය. 2 කම්බියේ පුතිරෝධය යන අනුපාතය වන්නේ, 1 කම්බියේ පුතිරෝධය
  - 1) 0.83 2) 0.91 3) 1.11 4) 1.20 5) 1.4
- 74) ලෝහ කම්බියකට  $\theta_1$  සහ  $\theta_2$  උෂ්ණත්වවල දී පිළිවෙළින්  $R_1$  සහ  $R_2$  පුතිරෝධ ඇත. පුතිරෝධකතාවයේ උෂ්ණත්ව සංගුණකය දෙනු ලබන්නේ,
  - $1) \frac{(\theta_1 \theta_2)}{(R_1 R_2)}$
- $2) \frac{(R_1 R_2)}{(\theta_1 \theta_2)}$
- 3)  $\frac{(R_1 R_2)}{(\theta_1 \theta_2)(R_1 + R_2)}$


- 4)  $\frac{(R_1 R_2)}{(R_2\theta_1 R_1\theta_2)}$
- 5)  $\frac{(R_2\theta_1 R_1\theta_2)}{(R_1 R_2)}$

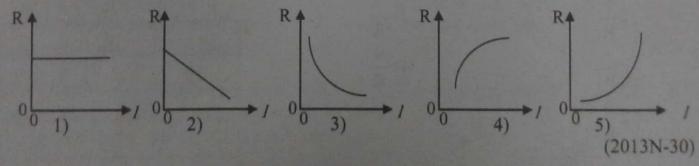

(2012 N-37)

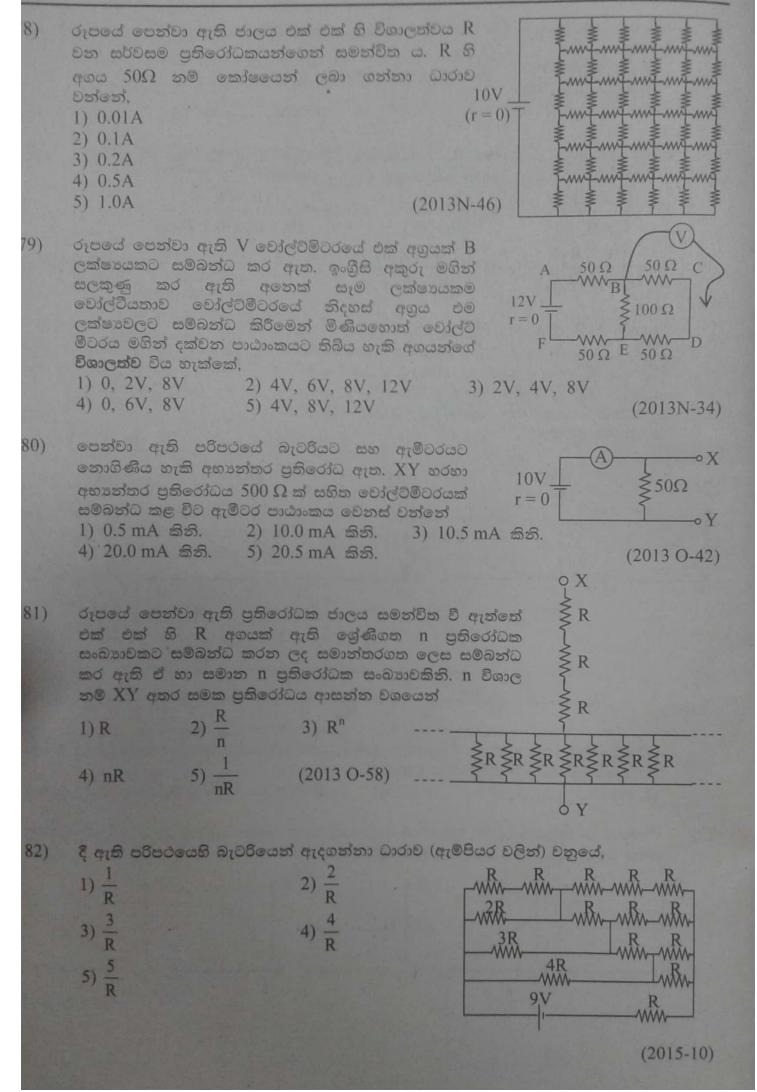

(2012 N-13)

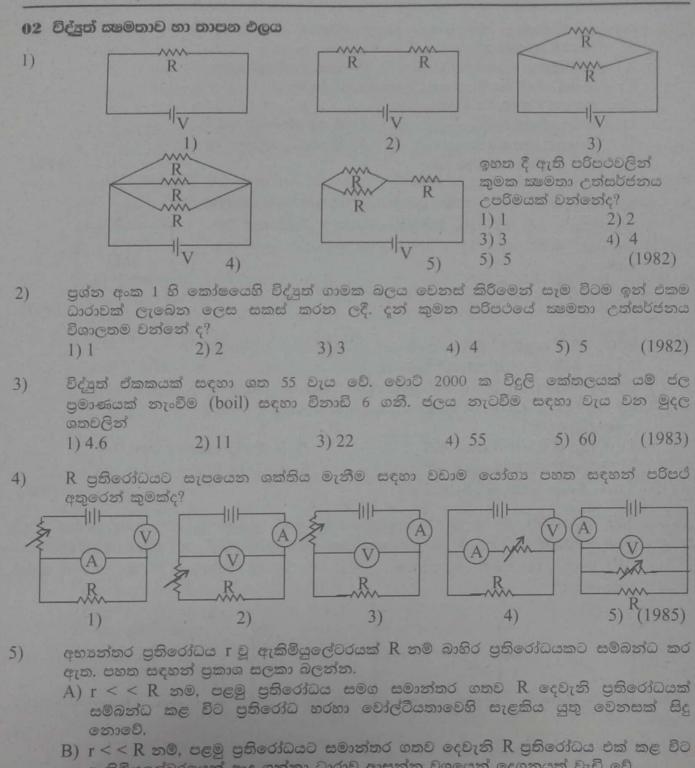

75) පෙන්වා ඇති පරිපථයේ PQ යනු 1000 Ω වන විචලා පුතිරෝධයකි. X අගුය P සිට Q දක්වා චලනය කිරීමේ දී P සහ X අතර පුතිරෝධය රේඛීයව වෙනස් වේ. X අගුය P සිට Q දක්වා චලනය වන විට I ඇමීටර පාඨාංකය වෙනස්වන ආකාරය වඩාත් හොඳින් නිරූපණය කරන්නේ,







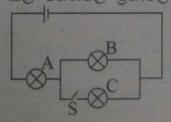

 $1\Omega$  පුතිරෝධක පහක් රූපයේ පෙන්වා ඇති අයුරින් සම්බන්ධ කොට ඇත. ජාලයේ A සහ B ලක්ෂා අතර සමක පුතිරෝධය වන්නේ"

- 1) 1Ω
- $2) 0.5\Omega$
- 3)  $0.25\Omega$
- 4)  $0.2\Omega$
- 5) 0.1Ω
- (2012 O-56)
- 77) ඒකාකාර කම්බි කැබැල්ලක් කුමයෙන් ඇද්දොත් පහත සඳහන් කුමන වකුයෙන් එහි දිග (ℓ) සමග පුතිරෝධයේ (R) වීචලනය නිවැරදිව දක්වයි ද?

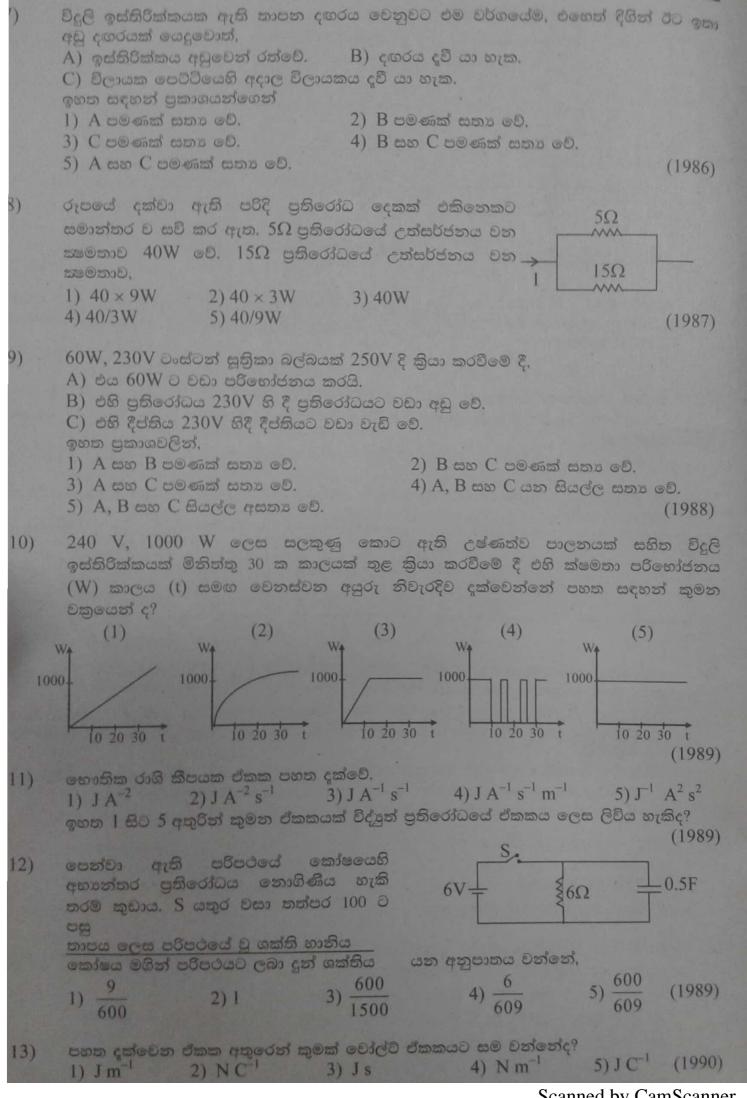







- ඇකිම්යුලේටරයෙන් ඇද ගන්නා ධාරාව ආසන්න වශයෙන් දෙගුනයක් වැඩි වේ.
- C) R >> r වුවහොත් ඇකිමියුලේවරයට R = r වූ විට දී වඩා දීර්ඝ ආයුකාලයක් ඇත.

ඉහත සඳහන් පුකාශවලින්,


- 1) A පමණක් සත්‍ය වේ.
- 2) A සහ B පමණක් සතා වේ.
- 3) B සහ C පමණක් සතා වේ.
- 4) A සහ C පමණක් සතා වේ.
- 5) A, B සහ C සියල්ල සතා වේ.

(1985)

- A, B සහ C සර්වසම විදුලි පහන් නම්, S ස්විච්චිය වැසූ කළ පහන්වල පුභාවලට සිදු 6) වන්නේ පහත සඳහන් කුමන වෙනස්වීම් පෙළද?
  - 1) A හි පුභාව නොවෙනස් ව පවතී. B හි අඩු වේ.
  - 2) A හි පුභාව වැඩි වේ. B හි නොවෙනස්ව පවතී.
  - 3) A හි පුභාව වැඩි වේ. B හි අඩු වේ.
  - 4) A හි පුභාව අඩු වේ. B හි වැඩි වේ.
  - 5) A හි පුභාව අඩු වේ. B හි අඩු වේ.



(1986)

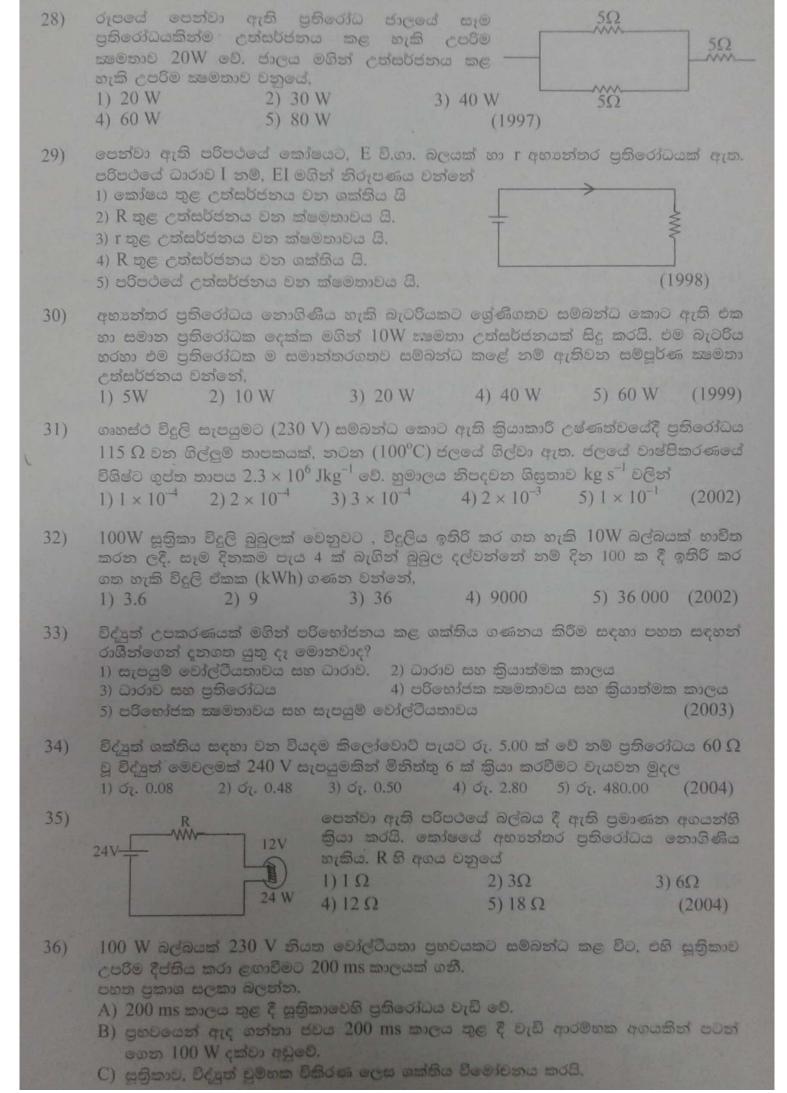


- නොසැලකිය හැකි අභාන්තර පුතිරෝධයකින් යුක්ත වූ එක් කෝෂයක් සමග සංසන්දනය 14) කරන විට, සමාන්තරගතව සම්බන්ධ කළ එවැනි කෝෂ සංඛනවක් මගින් 1) වඩා විශාල චෝල්ට්යතාවක් නිපදවයි. 2) වඩා විශාල කෘමතාවක් බාහිර පරිපථයට ලබා දෙයි. 3) වඩා විශාල ධාරාවක් බාහිර පරිපථයකට ලබා දෙයි. 4) වඩා දීර්ඝ කාලයක් තුළ දී එම ධාරාව ම බාහිර පරිපථයකට ලබා දෙයි. 5) වඩා දීර්ඝ කාලයක් තුළ දී වඩා විශාල සමෙතාවක් බාහිර පරිපථයකට ලබා දෙයි. (1990) අකුණු ගැසීමක දී 6C සෘණ ආරෝපණයක්  $10^7 \mathrm{V}$  විභව අන්තරයක් හරහා ගමන් කෙරේ. 15) මෙම අකුණ 1 ms කාලයක් පවතින්නේ නම්, විද්යුත් ශක්තිය උත්සර්ජනය වනි සීඝුතාව, 1)  $6 \times 10^{-7} \text{ W}$  2)  $6 \times 10^{7} \text{ W}$  3)  $6 \times 10^{-10} \text{ W}$ 4)  $6 \times 10^{10} \,\mathrm{W}$ 5)  $36 \times 10^{10} \text{ W}$ (1990)220V මූලිකයෙන් 0.5A ධාරාවක් ලබා ගෙන කියා කරන මෝටරයක් 90 W ක පුතිදානයක් 16) සපයයි. එය කුියාත්මක වන විට දී අපතේ යන සියුලුම ශක්තිය තාපන බවට පරිවර්තනය වේ නම්, විනඩි 10 ක් තුළ දී නිපදවෙන තාප පුමාණය වනුයේ, 2) 90 J 5) 54 000 J (1990) 3) 200 J 4) 12 000 J පෙන්වා ඇති පරිපථයේ අඩංගු බැටරියට නොගිණිය හැකි 17) තරමේ අභාන්තර පුතිරෝධයක් ඇත.  $1\Omega$  පුතිරෝධකය තුළ උත්සර්ජනය වන කමෙතාව වනුයේ. 1)  $\frac{1}{9}$  W  $\omega$ . 2)  $\frac{4}{9}$  W  $\omega$ . 3) 1 W  $\omega$ . 4) 3 W a. 5) 9 W a. විදුලි ඉස්තික්කයක් රත්කිරීම සඳහා එහි තාපන දඟරයක් ඇත. දෝෂ සහිත විදුලි 18) ඉස්තික්කයක තාපන දඟරයේ සැලකිය යුතු දිගන් පලදු වී (පිළිස්සී) ඇති බව පෙණුනි. දඟරයේ පලදු වී ඇති කොටස ඉවත්කොට, එම ඉස්තික්කයම රත් කිරීමට දඟරයේ ඉතිරි කොටස පාවිච්චි කළ හොත්, 1) සාමානා පරිදි එය කියා කරයි. 2) එමගින් අඩු තාපයක් උපදවන නමුත් ඉස්තුික්කයේ ආයු කාලය වැඩි වෙයි. 3) එය කෙටි කලක් කියා කොට දඟරය නැවත පිළිස්සෙයි.

  - 4) එයට කුඩා වෝල්ටීයතාවක් ඇති වෙයි.
  - 5) එය කුඩා ධාරාවක් ඇද ගනී.

(1991)

- ආරම්භයේ 30°C ඇති ජලය 2 kg නැටවීම සඳහා, 1.4 kW සීසුතාවෙන් කිුයා කරන 19) ස්කන්ධය 0.6 kg වූ විද්යුත් කේතලයක් භාවිත කෙරේ. පිළිවෙලින් ජලයේ සහ කේතලය සාදා ඇති දුවායේ විශිෂ්ඨ තාපධාරිතාවයන්  $4200~\mathrm{J~kg^{-1}~K^{-1}}$  සහ  $900~\mathrm{J~kg^{-1}~K^{-1}}$  වේ. මෙම කියාවලිය සඳහා ගත වූ කාලය,
  - 1) 27 s 氪. 2) 30 s 氪.


- 3) 420 s කි. 4) 447 s කි. 5) 450 s කි. (1992)
- 12V බැටරියකින් 1A ධාරාවක් පැය 100 ක් තුළ ලබාදිය හැක. බැටරියේ සම්පූර්ණ ශක්තිය 20) වස්තූන් එසවීම සඳහා උපයෝගී කරගත හැකි නම්, මෙම ශක්තිය මගින් 1200 kg වස්තුවක් එසවිය හැකි උපරිම උස වනුයේ.

1) 0.12 m a. 2) 1.2 m a. 3) 14.4 m a. 4) 144 m a. 5) 360 m a. (1992)

- විදුලි බල්බ දෙකක් වෙන් වෙන් වශයෙන් 120V කමෙතා සැපයුමකට සම්බන්ධ කළ විට ඒවා 21) හරහා පිළිවෙලින් 0.83A සහ 1.66A ධාරා ගලයි. මෙම බල්බ දෙක 240V සමෙතා සැපයුමක් හරහා ශේුණිගතව සම්බන්ධ කළ විට,
  - 1) පළමුවන බල්බය හරහා ධාරාව 1.66A වන අතර දෙවන බල්බය හරහා 3.32A වේ.
  - 2) පළමුවන බල්බය හරහා ධාරාව 0.83A වන අතර දෙවන බල්බය හරහා 1.66A වේ.
  - 3) බල්බ දෙක හරහා ම ධාරාව 0.83A වේ.
  - 4) බල්බ දෙක හරහා ම ධාරාව 1.66A වේ.
  - 5) බල්බ දෙක හරහා ම ධාරාව 1.11A වේ.

(1992)

විද්යුත් ගාමක බලය  $9 ext{V}$  සහ අභාපන්තර පුතිරෝධය  $0.5\Omega$  වූ වියළි කෝයෙක් සමග 22) පුතිරෝධයක් සහ ඇමීටරයක් ශේුණිගතව සන්ධිකර ඇත. ඇමීටර පාඨාංකය I A නම පුතිරෝධකයේ ශක්ති උත්සර්ජක සීසුතාව 3) 2.5 W 4) 8.5 W 5) 9 W (1993)1) 0.5 W 2) 2 W එක් එක් කෝෂයෙහි අභාාන්තර පුතිරෝධය  $0.1\Omega$  ද විද්යුත් ගාමක බලය 2v ද වූ කෝෂ 23) දෙකක් සහ  $2\Omega$  පුතිරෝධක දෙකක් ඔබට සපයා ඇත. ඔනෑම  $2\Omega$  පුතිරෝධකයක් හරහා උපරිම සමෙතාව ලබා දෙන්නේ පහත ඒවායින් කුමන පරිපථයේ ද? (1993)5) 1) 2) 3) 4) රට හරහා විදුලිය සම්පේෂණය කරන්නේ ඉතා අධික චෝල්ටීයතාවකිනි. මෙසේ වීමට හේතු 24) වන්නේ 1) විද්යුත් ජනක අධික වෝල්ටීයතාවයකින් විදුලිය නිපදවන නිසාය. 2) ඉලෙක්ටෝන ඈත දුරකට තල්ලු කිරීමට අධි චෝල්ටීයතාවක් අවශා නිසා ය. 3) එය විශාල ධාරාවක් ගැලීමට සලස්වන නිසාය. 4) සම්පේෂණ රැහැන්වල මිනිසුන්ගෙන් ඇති විය හැකි හානිය වැළැක්වීම නිසාය. (1994)5) වැඩි සමෙතාවක් වඩා කාර්යසමෙ ලෙස සම්පේෂණ කළ හැකි නිසාය. විදුලි බල්බයක දීප්තිය පාලනය කිරීම සඳහා භාවිත කරන 25) පරිපථයක් රූපයේ දක්වේ. A සහ B පුධාන විදුලි සැපයුමට සම්බන්ධ කරනු ලබන අතර P සර්ෂණ යතුර R පුතිරෝධකය හරහා ගෙන යනු ලැබේ. පහත පුකාශ සලකා බලන්න. A) P යතුර C හි ඇති විට බල්බය සම්පූර්ණ දීප්තියෙන් දැල්වේ. B) P යතර C හි වුවත් D හි වුවත් R හි ශක්ති උත්සර්ජනය එක සමාන C) සම්පූර්ණ ශක්ති පරිභෝජනය සෑම විටම එකම වේ. ඉහත පකාශ අතුරෙන්, 2) B පමණක් සතා වේ. 1) A පමණක් සතා වේ. 4) A සහ B යන පමණක් සතා වේ. 3) C පමණක් සතා වේ. (1994)5) A. B සහ C සියල්ල අසතා වේ. 26) ඇම්පියර් පැය යනු 2) සමෙතාවෙහි ඒකකයක් වේ. 1) ධාරාවෙහි ඒකකයක් වේ. 4) කාලයෙහි ඒකකයක් වේ. 2) 3) ශක්තියෙහි ඒකකයක් වේ. (1996)5) ආරෝපණ පමාණයෙහි ඒකකයක් වේ. නොගිණිය හැකි අභාන්තර පුතිරෝධයක් හා විද්යුත් ගාමක 27) බලය 12V වන බැටරියක් 1.5V, 0.50A බල්බ තුනකට රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කොට ඇත. බල්බ සාමානා දීප්තියෙන් දල්වීම සඳහා R පුතිරෝධයට තිබිය යුතු අගය R වන්නේ 3)  $15\Omega$ 1)  $5\Omega$ 2)  $7\Omega$ (1997) $5)30\Omega$ 4) 21 Ω




## ඉහත පුකාශවලින්

- 1) A පමණක් සතා වේ.
- 3) A සහ C පමණක් සතා වේ.
- 5) A, B සහ C සියල්ල සතා වේ.
- 2) A හත H පමණක් සතා වේ.
- 4) B සහ C' සමණක් සත්ව වේ.

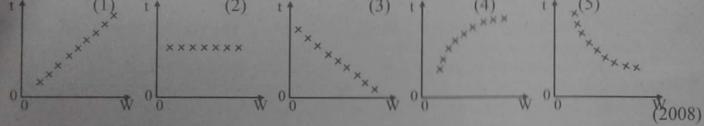
සර්වසම විදුලි බල්බ හතරක් රූපයේ දැක්වෙන මර්දි 37) බැටරියකට සම්බන්ධ කොට ඇත. සියලුම බල්බ දැල්වේ හම ද A , B සහ C බල්බවල තීවුතා පිළිවෙළින් IA. In සහ Ice

- 1)  $I_A > I_C > I_B$  2)  $I_A > I_B = I_C$  3)  $I_B = I_C$  4)  $I_A > I_B > I_C$  5)  $I_A = I_B = I_C$  (2007)



A(110 V, 40W) සහ B(110 V, 100W) යන විදුලි ඔබුළ දෙක ශේණිගතව 220 V වූ විදුලි 38) සැපයුමක් සමඟ සම්බන්ධ කර ඇත. පහත සඳහන් පකාශවලින් කුමක් අසතා ද?

- 1) A හරහා ධාරාව B හරහා ධාරාවම වේ.
- 2) A හරහා විභව බැස්ම B හරහා විභව බැස්මට වඩා වැඩි ය.
- 3) B හරහා ධාරාව එහි පුමාණන ධාරාවට වඩා අඩුය.
- 4) A හි ක්ෂමතා උත්සර්ජනය B හි ක්ෂමතා උත්සර්ජනයට වඩා වැඩිය.
- 5) B විදුලි බුබුළ දැවී යැමේ සම්භාවිතාව වඩා වැඩිය.


(2007)

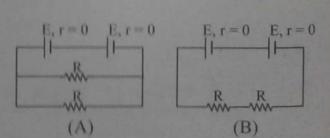
(2005)

39) 240 V ක්ෂමතා පුභවයකට සම්බන්ධ කොට ඇති තාපන මුලාවයවයක් 10A ධාරාවක් ඇද ගනියි. මූලාවයවයේ චොටීයතාව වන්නේ

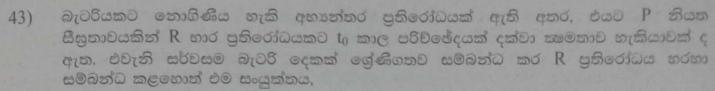
- 1) 2.4 W
- 2) 24 W
- 3) 240 W 4) 2,4 kW
- 5) 24 kW (2008)

සර්වසම කේතල සමූහයකට වෙනස් චොල්ටීයතාවන් සහිත තාපන දඟර සව් කර ඇත. එම 40) කේතල සමාන ජල පුමාණ රත් කිරීමට යොදා ගන්නේ නම් ජලයේ උෂ්ණත්වය එහි තාපාංකය දක්වා නැංවීමට අවශා කාලය (t), දගරවල වොල්ට්යතාව (W) සමඟ වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය වන්නේ




41) අභාන්තර පුතිරෝධය නොසලකා හැරිය හැකි, ශේණීගතව සම්බන්ධ කරන ලද 1.5V බැටරි හයකින් රේඩියෝවකට ජවය සපයනු ලැබේ. එක බැටරියකින් 9600 C ආරෝපණයක් සැපයිය හැකි ය. කිසියම් ශබ්ද මට්ටමක දී මෙම බැටරි මගින් රේඩියෝව  $270~\Omega$  ක පුතිරෝධයක් ලෙස සලකනු ලබයි නම් එම ශබ්ද මට්ටමෙන් ජේඩියෝව කිුියාත්මක කළ හැකි පැය ගණන

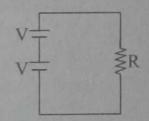
- 1)60
- 2) 80
- 3)90
- 4) 240
- 5) 480


(2008)

42) (B) පරිපථයෙහි ක්ෂමතා හානිය (A) පරිපථයෙහි ක්ෂමතා හාතියට සමාන කළ හැක්කේ (B) හි පුතිරෝධ R සිට

- 1) 8R දක්වා වෙනස් කළහොත් ය.
- 2) 4R දක්වා වෙනස් කළහොත් ය.
- 3) 2R දක්වා වෙනස් කළහොත් ය.
- R දක්වා වෙනස් කළහොත් ය.
- (5) (5)  $\frac{R}{r}$  දක්වා වෙනස් කළහොත් ය.

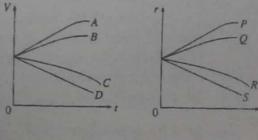



(2009)



- 1)  $\frac{\Gamma}{2}$  නියත සීඝුතාවයකින්  $4t_0$  කාලයක් සඳහා සමෙතාව සපයයි.
- 2) p නියත සීඝුතාවයකින් 2to කාලයක් සඳහා කමෙතාව සපයයි.
- 3) 2P නියත සීඝුතාවයකින් to කාලයක් සඳහා සමෙතාව සපයයි.
- 4) 4P නියත සීඝුතාවයකින්  $\frac{t_0}{2}$  කාලයක් සඳහා සමෙතාව සපයයි.
- 5) 4P නියන සීඝුතාවයකින් to කාලයක් සඳහා කමෙතාව සපයයි.

(20110)

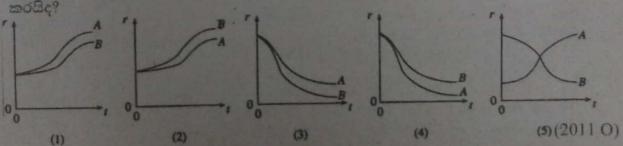

රූපයේ පෙන්වා ඇති පරිදි නොගිණිය හැකි අභාන්තර පුතිරෝධ 44) සහිත, ශුේණිගත ලෙස සම්බන්ධ කර ඇති සර්වසම බැටරි දෙකකට, P නියත සීගුතාවයකින් පුතිරෝධය R වූ භාර පුතිරෝධයකට  $t_0$ කාලයක් තිස්සේ කුමතාව සැපයීමේ හැකියාවක් ඇත. බැටරි දෙකෙන් එක බැටරියක් පමණක් R හරහා සම්බන්ධ කළහොත් එය, 1) P නියත සීඝුතාවයකින්  $t_0$  කාලයක් සඳහා සමෙතාව සපයයි.

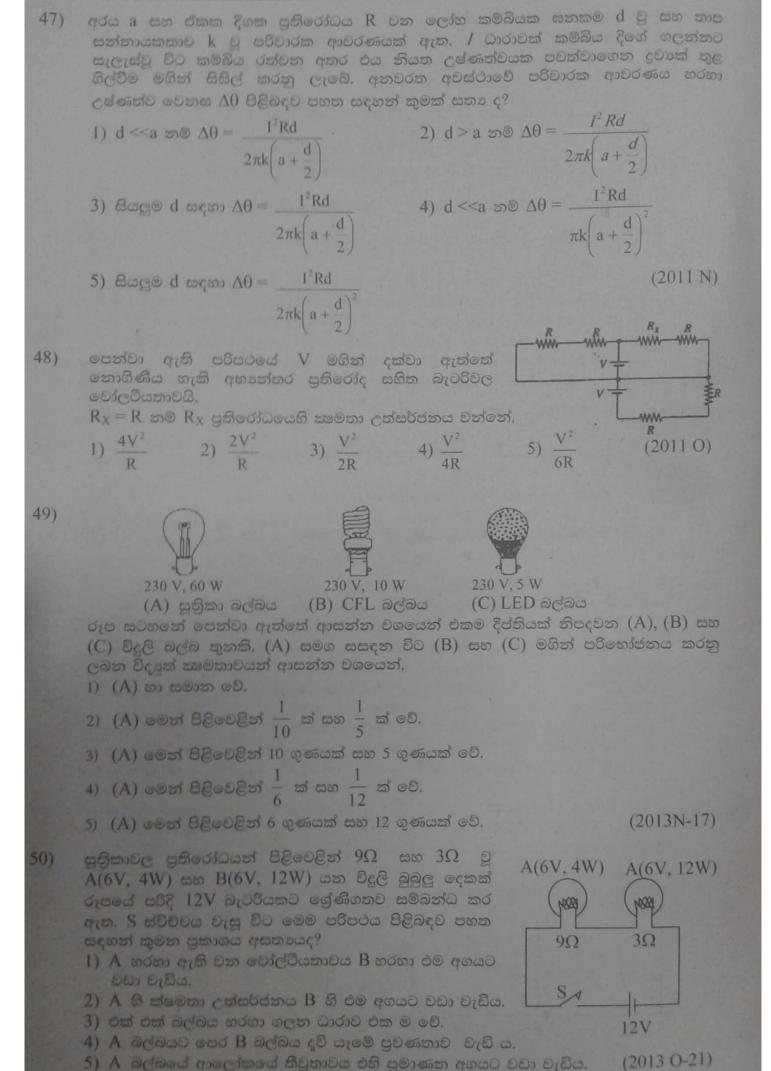


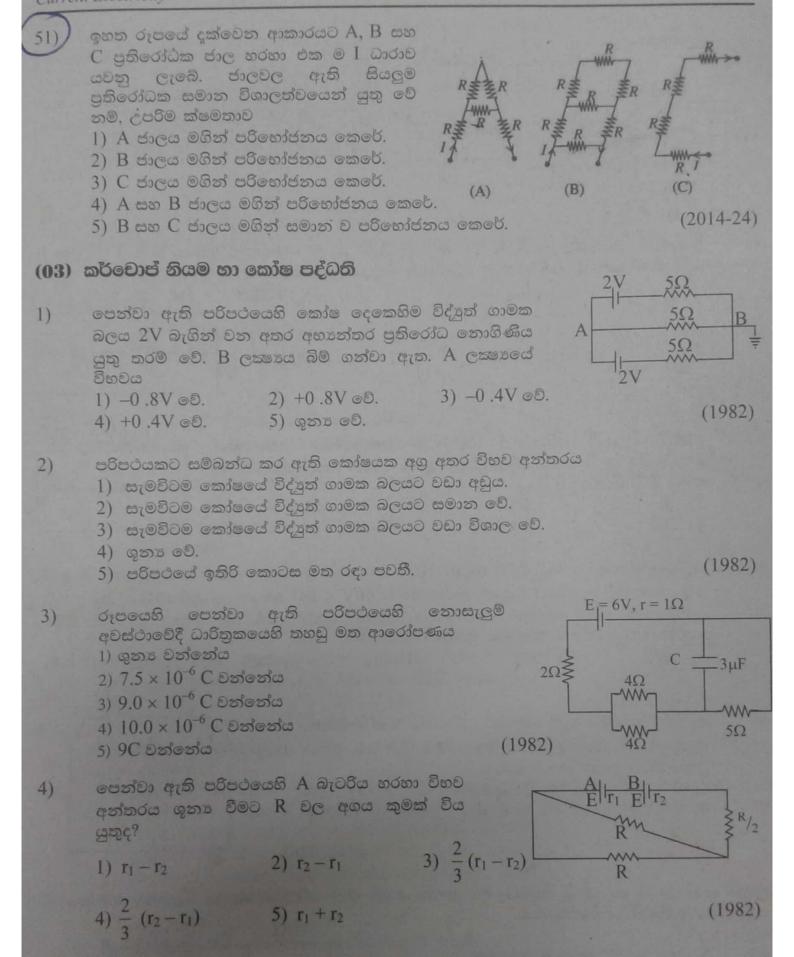
- $rac{1}{2}$  නියන සීසුතාවයකින්  $\mathbf{t}_0$  කාලයක් සඳහා කුමෙතාව සපයයි.
- නියන සීසුතාවයකින්  $\frac{t_0}{2}$  කාලයක් සඳහා කෘමතාව සපයයි.
- $rac{P}{T}$  නියත සීසුතාවයකින්  $rac{t_0}{2}$  කාලයක් සඳහා සමෙනාව සපයයි.
- $rac{P}{2}$  නියත සීඝූතාවයකින්  $2t_0$  කාලයක් සඳහා සමෙතාව සපයයි.

(2011 N)

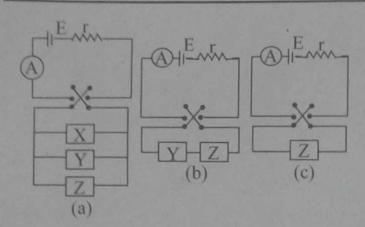
වියළි කෝෂයක ගුණාත්මක භාවය ඇගයීම, දිගු කාල 🗸 45) පරිච්ඡේදයක් පූරා කෝෂයෙන් නියත ධාරාවක් ලබා ගන්නා විට එහි චෝල්ටීයතාව (V) සහ අභාන්තර පතිරෝධය (r) කාලය (t) සමග වෙනස්වීම අධ්‍යයනය කිරීම මගින් සිදු කළ හැක. පහත සඳහන් V සහ t අතර හා r සහ t අතර පුස්තාරවල ලැබිය හැකි වකු <sub>ග</sub> මෙන්ම ලැබීය නොහැකි වකු ද ඇතුලත් කර ඇත. ලැබිය හැකි වකු අතුරෙන් එක් එක් පුස්තාරයේ කුමන වකුය මගින් වඩාත් හොඳ කෝෂය නිරූපණය කරයි ද?





1) A ab P 2) C ab Q 3) D ab S 4) B ab R

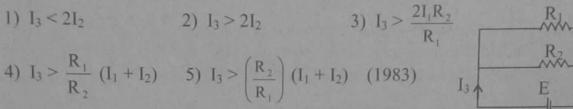

5) B සහ Q

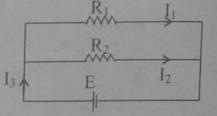
(2011 N)


A සහ B යන වර්ග දෙකකට අයත් 1.5 V බැටරි දෙකක ගුණාත්මකභාවය බැටරියෙන් නියන 46) ධාරාවක් දිගු කාල සීමාවක් තුළ ඇද ගන්නා විට එහි අභාහන්තර පුතිරෝධයේ වෙනස්වීම මැනීම මගින් පරීක්ෂා කරන ලදි. A බැවරිය B බැවරියට වඩා දිගු කාල පරිච්ඡේදයක් භාවිත කළ හැකි බව සොයා ගන්නා ලදී. පහන දක්වා ඇති කාලය (t) එදිරියෙන් අභාගන්නර පුතිරෝධය (r) හි කුමන පුස්තාරය මෙම බැටරි දෙකෙහි හැසිරීම වඩාත් හොඳින් නිරූපණය

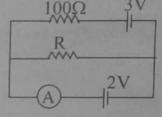








5) රූප සටහනේ පෙන්වා ඇති X, Y සහ Z නම් වූ විද්යුත් සංරචක විද්යුත් ගාමක බලය E සහ අභාන්තර පුතිරෝධය r වූ කෝසෙකට සම්බන්ධ කර ඇත. (a) සහ (c) පරිපථයන්හි ඇති ඇම්ටර ශූනා නොවන පාඨාංක දක්වන අතර (b) හි ඇම්ටර පාඨාංකය ශූනා වේ. දිශාමාරු යතුරු මාර්ගයෙන් මෙම පරිපථ තුනේම ධාරාවන්ගේ දිශාව මාරු කළ විට, (a) පරිපථයේ ඇති ඇම්ටරයේ හැර අනෙක් ඇම්ටරවල පාඨාංක නොවෙනස්ව පවතී. X, Y සහ Z හඳුනා



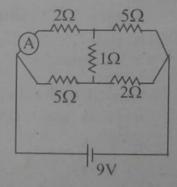

|    | X         | Y         | Z         |
|----|-----------|-----------|-----------|
| 1) | පුතිරෝධකය | කෝෂය      | කෝෂය      |
| 2) | කෝෂය      | කෝෂය      | පුතිරෝධකය |
| 3) | ධාරිතුකය  | ධාරිතුකය  | පුතිරෝධකය |
| 1) | කෝෂය      | ධාරිතුකය  | පුතිරෝධකය |
| 5) | පුතිරෝධකය | පුතිරෝධකය | ධාරිතුකය  |
|    |           |           | (1083)    |

- 6) පෙන්වා ඇති පරිපථයෙහි  $R_1$  හා  $R_2$  යනු  $R_2 > R_1$  වන අන්දමේ පුතිරෝධ ද,  $I_1$  ,  $I_2$  හා  $I_3$ යනු ඒ ඒ ශාඛාවල ධාරාවන් ද වේ. පහත සඳහන් අසමානතාවලින් නිවැරදි කුමක්ද?





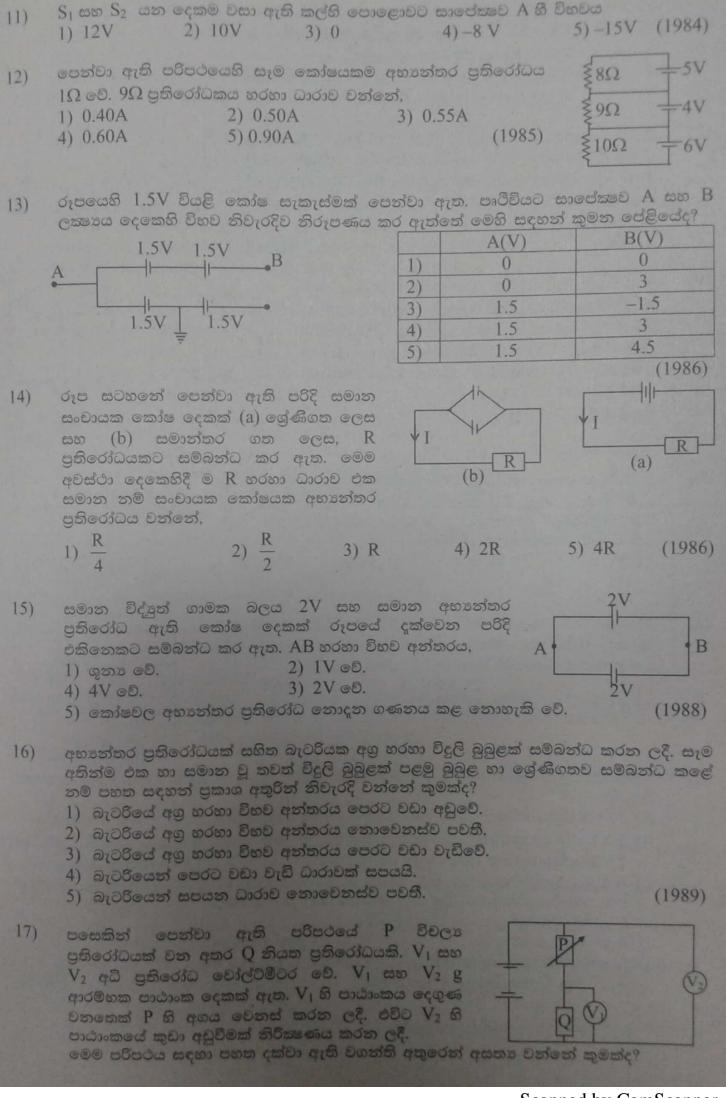
- 7) පෙන්වා ඇති පරිපථයේ කෝපවල අභාන්තර පුතිරෝධය නොගිණිය හැකි අතර මිලිඇමීටරය ශූනා පාඨාංකයේ දක්වයි. R හි අගය ඕම්වලින්,
  - 1) 20 4) 200
- 2) 50 5) 400
- 3) 100
- (1983)



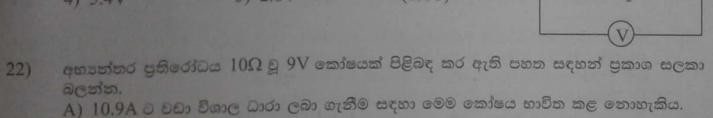

- 8) බැටරියක් ආරෝපණය කිරීම සඳහා 100V සරලධාර පුභවයක් භාවිත කරනු ලැබේ. දී ඇති මොහොතකදී බැටරියේ විද්යුත් ගාමක බලය  $40\mathrm{V}$  ද එහි අභාන්තර පුතිරෝධය  $2\Omega$  ද වේ. පුභවයෙන් ලබා ගන්නා ආරෝපණය කිරීමේ ධාරාව 2A වීම සඳහා බැටරිය සමග **ශු්ණිගතව සම්බන්ධ කළ යුතු පුතිරෝධයේ අගය,** 
  - 1)  $18\Omega$
- 2)  $28\Omega$
- $3) 30\Omega$
- 4)  $48\Omega$
- $5)68\Omega$ (1984)

- 9)
- රූපයේ පෙන්වා ඇති අන්දමට පුතිරෝධ 5 ක් සම්බන්ධ කර ඇත. A අම්ටරය තුළින් ගලන ධාරාව 2A වේ. එවිට,  $1\Omega$ පුතිරෝධය තුළින් ගලන ධාරාව
- 1) 0

- 2) 0.5A
- 3) 1.0A


- 4) 1.2A
- 5) 2.0A
- (1982)




පුශ්න අංක 10 ට හා 11 ට පිළිතුරු දීම සඳහා මෙහි ඇති පරිපථය සලකා බලන්න. කෝසෙන්හි අභාන්තර පුතිරෝධය නොමැතිය.

- 10)
  - $S_1$  වසා  $S_2$  විවෘත ව ඇති කල්හි
    - A) A ට සාපේකවේ C හි විභවය 2V වේ.
    - B) A ට සාපේකවේ Q හි විභවය 10Vවේ.
    - C) S<sub>1</sub> හරහා ධාරාවක් නොගලයි. ඉහත පුකාශවලින්
    - 1) A පමණක් සතා වේ.
    - 3) C පමණක් සතා වේ.
    - 5) B සහ C පමණක් සතා වේ.
- 2) B පමණක් සතා වේ.
- 4) A සහ B පමණක් සතා වේ.

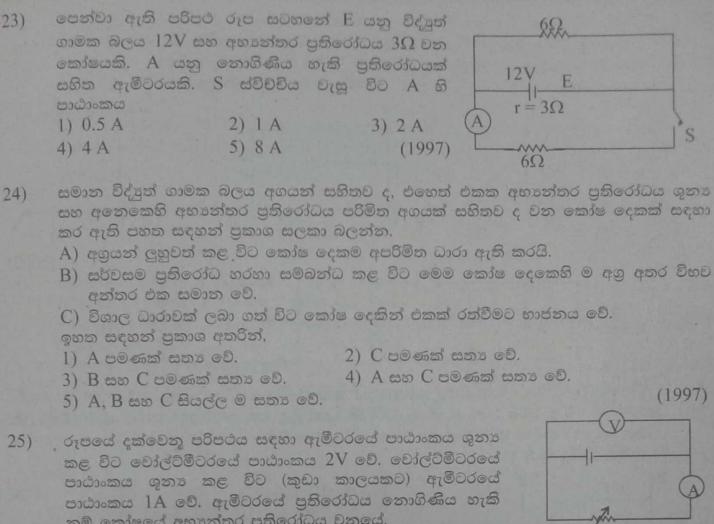
(1984)

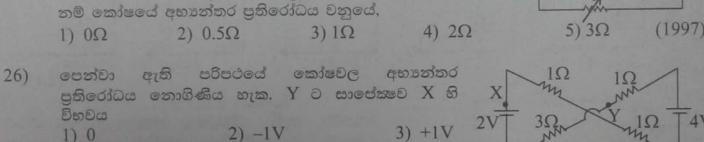


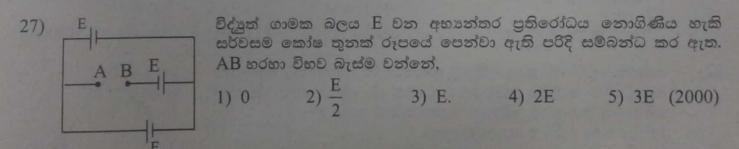
 Q හරහා ගලන ධාරාව දෙගුණ වේ. P හි ඇතිකල වෙනස නිසා එහි පුතිරෝධය වැඩි වී ඇත. 3) බැටරියට අභාන්තර පුතිරෝධයක් ඇත. 4) බැටරියේ අගු හරහා විභව අන්තරය  $V_2$  මගින් කියැවේ. 5) V<sub>1</sub> හා V<sub>2</sub> හි පාඨාංක සමාන වනුයේ P හි අගය ශූනා වුවොත් පමණි. (1989) රූපයේ දක්වෙන ජාලයේ a සිට b දක්වා 0.2A ක ධාරාවක් පවත්වා ගනු ලබයි. කෝෂයේ විද්යුත් ගාමක බලය 2V වන අතර එහි අභාන්තර පුතිරෝධය ශූනා වේ.  $10\Omega$ ab හරහා විභව අන්තරය, 1) ඉතිහිය. 2) IV 5) 4V (1990)අභාපන්තර පුතිරෝධය නොසලකා හැරිය හැකි සර්වසම බැටරි දෙකක් R බාහිර පුතිරෝධයක් හා සම්බන්ධ කර ඇති අයුරු (A) සහ (B) රූපවල දක්වා ඇත. (A) සහ (B) 'රූපවලින් දක්වෙන පරිපථවල R පුතිරෝධය හරහා යන ධාරාවන් අතර සම්බන්ධය වනුයේ, 1)  $i_1 = 2i_2$  2)  $i_1 = i_2$  3)  $i_2 = 2i_1$  4)  $i_1 = \sqrt{2} i_3$ (1991)පරිපථයක කොටසක් වන PQ තුළින් 1.0A ධාරාවක් පෙන්වා ඇති දිශාවට යැවූ විට පරිපථය මගින් 5W කෘමතාවක් ලබා  $P_{\longrightarrow}$ ගතී. කෝෂයේ අභාන්තර පුතිරෝධය නොගිණිය හැකි නම් 1A එහි වීද්යුත් ගාමක බලය වන්නේ, 1) 5V a. 2) 4V a. 3) 3Va. 4) 2V a. 5) 1V a. පෙන්වා ඇති පරිපථයේ බැටරියට 6V ක විද්යුත් ගාමක බලය ක් සහ  $0.2\Omega$  අභාන්තර පුතිරෝධයක් ඇත. කෝෂය තුළින් 2Aගලන ධාරාව 2A නම් V වෝල්ට්මීටරයේ පාඨාංකය 2) 5.8V 3) 5.6V 1) 6V 5) 2.8V (1993)4) 5.4V



- B) 10Ω ට වඩා පුතිරෝධයක් ඇති පුතිරෝධයක් අගු හරහා සම්බන්ධ කළ විට කෝෂය විසින් පුතිරෝධකය හරහා ඇති කරනු ලබන්නේ 4.5V ට අඩු විභව අන්තරයකි.
- C) අනු හරහා සම්බන්ධ කර ඇති බාහිර පරිපථයකට කෝෂය මගින් 9V සපයනු ලබන්නේ එම පරිපථය කිසිම ධාරාවක් ඇද නොගන්නේ නම් පමණි.
- මෙම පුකාශ අතුරින් 1) A පමණක් සතා වේ.


18)


19)


20)

21)

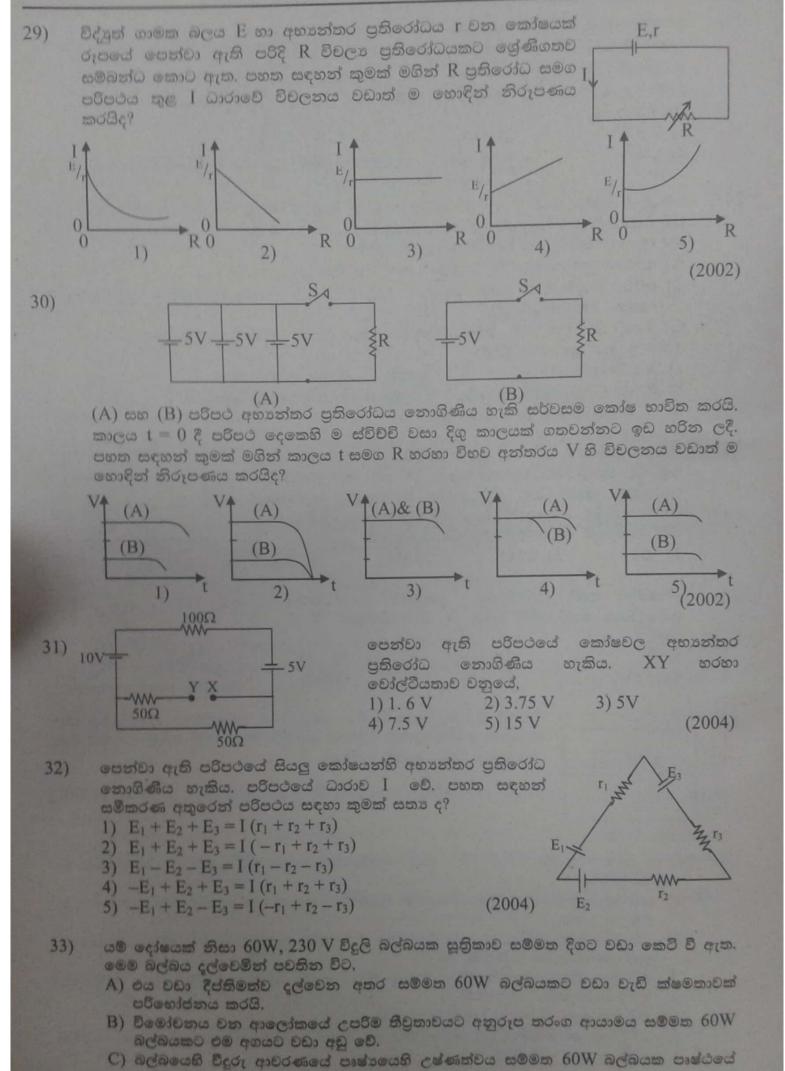
- 2) C පමණක් සතා වේ.
- 3) A සහ C පමණක් සතා වේ. 4) B සහ C පමණක් සතා වේ.
- 5) A. B සහ C යන සියල්ලම සතා වේ.







(1998)


- පහත සඳහන් කුමක් මගින් 1.5V වියලි කෝෂයකට අභාන්තර පුතිරෝධයක් තිබෙන බව 28) නොපෙන්වයිද?
  - 1) එහි අගු අතර චෝල්ටීයතාවය එය සම්බන්ධ කොට ඇති පුතිරෝධයේ අගය සමග වීචලනය වේ.
  - 2) එවැනි කෝෂ කිහිපයක් සමාන්තරගතව සම්බන්ධ කළ විට අගු අතර චෝල්ටීයතාවය සුළු පුමාණයකින් වැඩි වේ.
  - 3) එහි අගු අතර චෝල්ටීයතාවය, එය මැතීමට භාවිත කරන චෝල්ට්මීටරයේ අභාපන්තර පුතිරෝධය සමග රඳා පවතී.
  - 4) එහි අගු ලුහුවත් කළ විට කෝෂය රත් වේ.

5) +3V

4) - 3V

5) පරිපූර්ණ චෝල්ට්මීටරයක් මහින් එහි අගු අතර චෝල්ටීයතාවය මනිනු ලැබූ විට එය (2002)1.5V අගයක් පෙන්වයි.

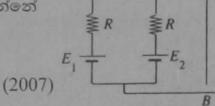
(1997)



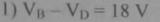
උෂ්ණත්වයට වඩා ඉහළ අගයක පවතී.

Second 11 Constitution

#### ඉහත පුකාශවලින්


- 1) A පමණක් සතා වේ.
- 3) B සහ C පමණක් සතා වේ. 4) A සහ C පමණක් සතා වේ.
- 5) A, B සහ C සියල්ල ම සතා වේ.
- 2) A සහ B පමණක් සතා වේ.

රුපයේ පෙන්වා ඇති  $E_1$  සහ  $E_2$  කෝෂ සඳහා ශුනා සඅභාන්තර 34) පුතිරෝධ ඇත. A සහ B අගු අතර චෝල්ටීයතාව V වන්නේ




- 1)  $E_1 E_2$  2)  $E_1 + E_2$  3)  $\frac{E_1 + E_2}{4}$

4) 
$$\frac{E_1 - E_2}{2}$$
 5)  $\frac{E_1 + E_2}{2}$ 



35) පෙන්වා ඇති පරිපථයෙහි බැටරි සඳහා තොගිණිය හැකි අභාන්තර පුතිරෝධ ඇත. පරිපථයේ A, B, C සහ D ලක්ෂාවල විභව පිළිවෙලින්  $V_A$ ,  $V_B$ ,  $V_C$  සහ  $V_D$  මගින් නිරූපණය කරනු ලබන්නේ නම්



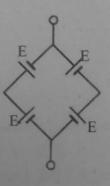
2) 
$$V_A \neq V_D$$

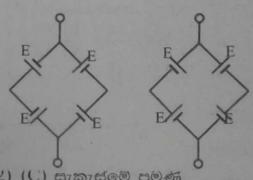
3) 
$$V_B - V_C = \frac{6}{124} V$$
 4)  $V_A - V_C = -6 V$ 

4) 
$$V_A - V_C = -6 V_C$$

$$5)~R=0$$
 නම් පමණක්  $V_A-V_D=0$ 



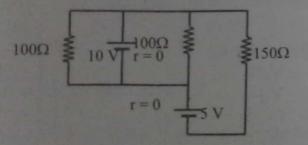

 $12\Omega$ 


(2006)

36) තොගිණිය හැකි අභාන්තර පුතිරෝධ සහිත සර්වසම බැටරි හතරක් (A), (B) සහ (C) රූප මගින් පෙන්වා ඇති පරිදි සම්බන්ධ කර ඇත.

බැටරි හරහා ධාරා ශූනා වන්නේ

- 1) (A) සැකැස්මේ පමණි.
- 3) (A) සහ (C) සැකැස්මේ පමණි.
- 5) (A) සහ (B) සැකැස්මේ පමණි.



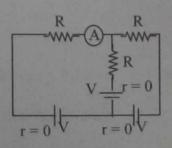


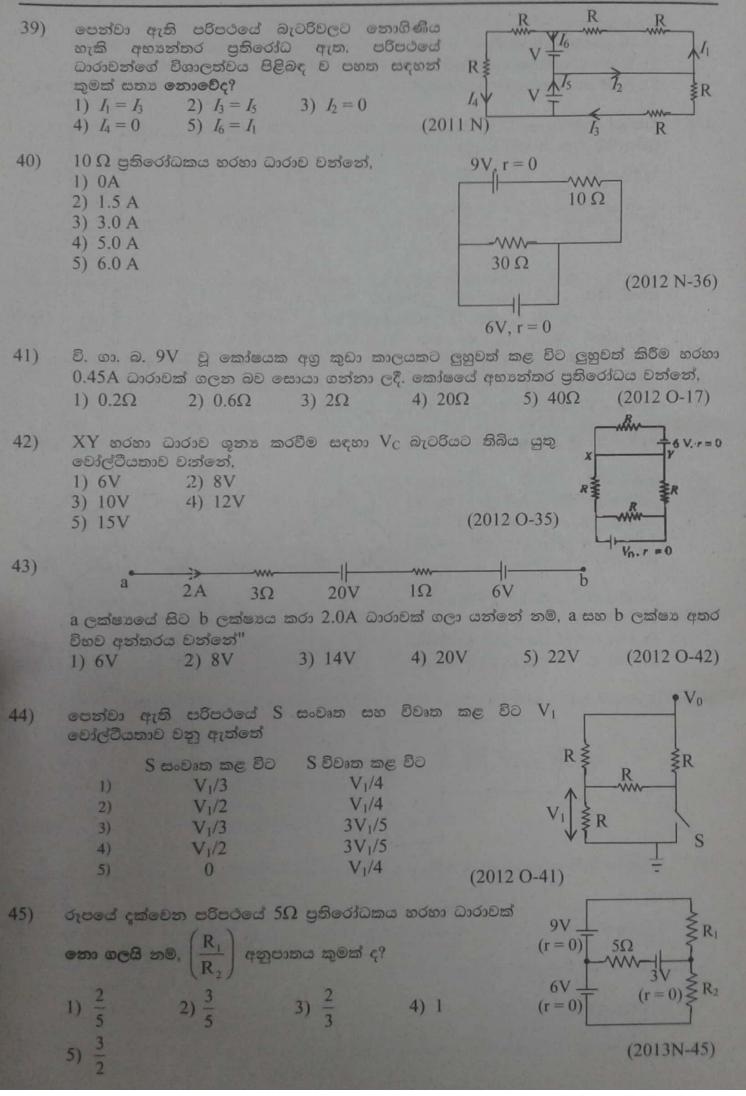

 $R = 100\Omega$ 

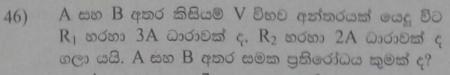
- 2) (C) සැකැස්මේ පමණි.
- 4) (B) සහ (C) සැකැස්මේ පමණි. (2009)

37) ්,පයෙහි දක්වා ඇති පරිපථයේ  $150~\Omega$  පුතිරෝධකය හරහා ධාරාව වන්නේ




- 1) 0.01 A
- 2) 0.05 A
- 3) 0.10 A
- 4) 0.33 A
- 5) 0.50 A

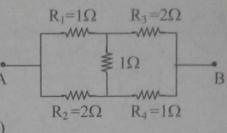

(2009)


පෙන්වා ඇති පරිපථයෙහි A ඇමීටරය හරහා ධාරාව වන්නේ, 38)

(1) 0

(2010)

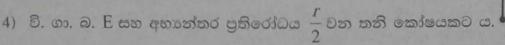




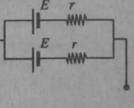





$$2) \frac{7}{5}\Omega$$


1) 
$$\frac{4}{3}\Omega$$
 2)  $\frac{7}{5}\Omega$  3)  $\frac{3}{2}\Omega$ 




5)  $7\Omega$ 

(2013N-47)

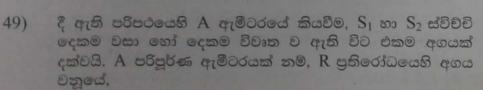
- 47) රූපයේ දක්වෙන ආකාරයට සම්බන්ධ කර ඇති. එක් එක් හි වි. ගා. බ. E සහ අභාන්තර පුතිරෝධය r වන කෝෂ දෙකක් සමක වන්නේ,



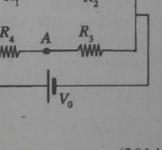
5) වී. ගා. බ. E සහ අභාන්තර පුතිරෝධය 2r වන තනි කෝෂයකට ය.

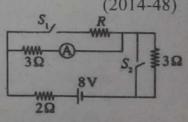


(2014-6)


රූපයේ පෙන්වා ඇති පරිපථයෙහි  $\mathrm{R}_2$  පුතිරෝධය ශුනායේ සිට අනන්තය දක්වා වෙනස් 48) කරන විට B ට සාපේක්ෂ ව A හි විභවය වෙනස් වන්නේ,

1) ශූනායේ සිට ශූනායට ය.


$$\frac{R_1}{R_4 + R_1} V_0$$
 සිට ශූනාපයට ය.


$$3) \ \frac{R_{_1}}{R_{_4}+R_{_3}} \, V_{_0} \ \hbox{$\ \, \hbox{$\it le } \ \, $} \frac{R_{_1}}{R_{_4}+R_{_1}} \, V_{_0} - V_{_0} \ \hbox{$\it le } \ \hbox{$\it le } \ .$$

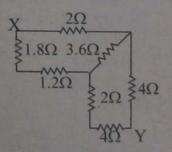
$$4) \ \frac{R_3}{R_4 + R_3} \, V_0 \ \hbox{$\mbox{a}$} \odot \ \frac{R_3}{R_4 + R_3} \, V_0 - V_0 \ \hbox{$\mbox{o}$} \odot \ \hbox{$\mbox{o}$}.$$



- $1) 1\Omega$
- $2)2\Omega$
- $3)3\Omega$
- $4)4\Omega$





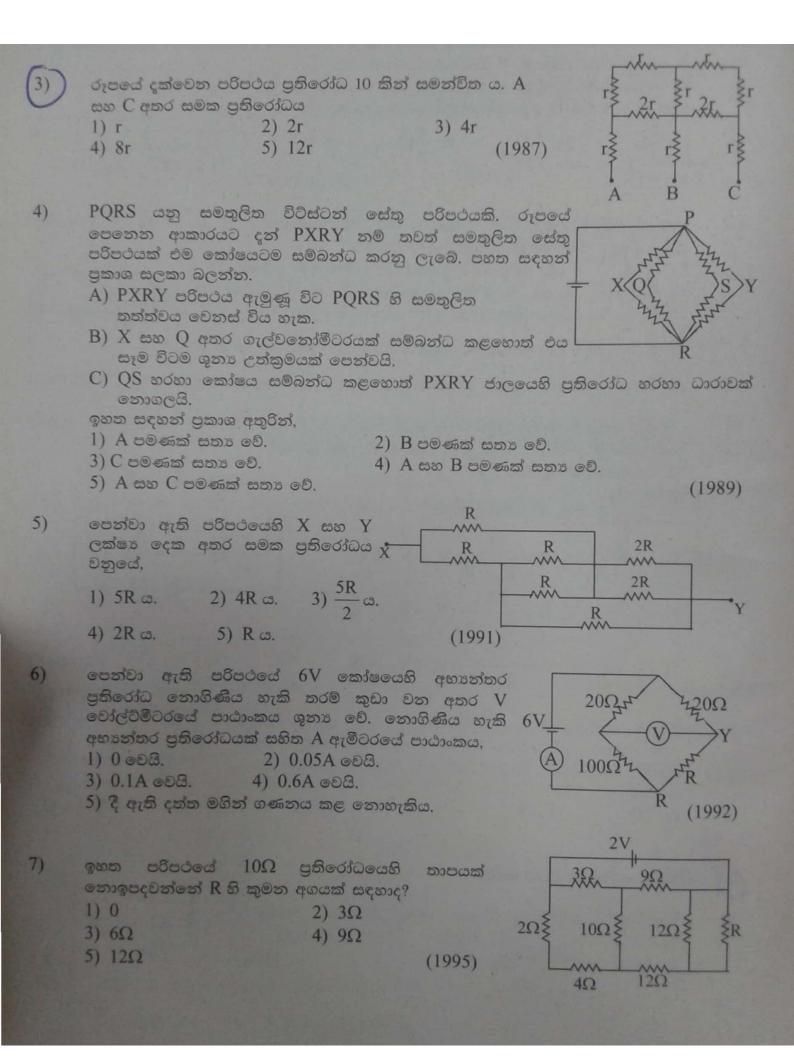

 $5)6\Omega$ 

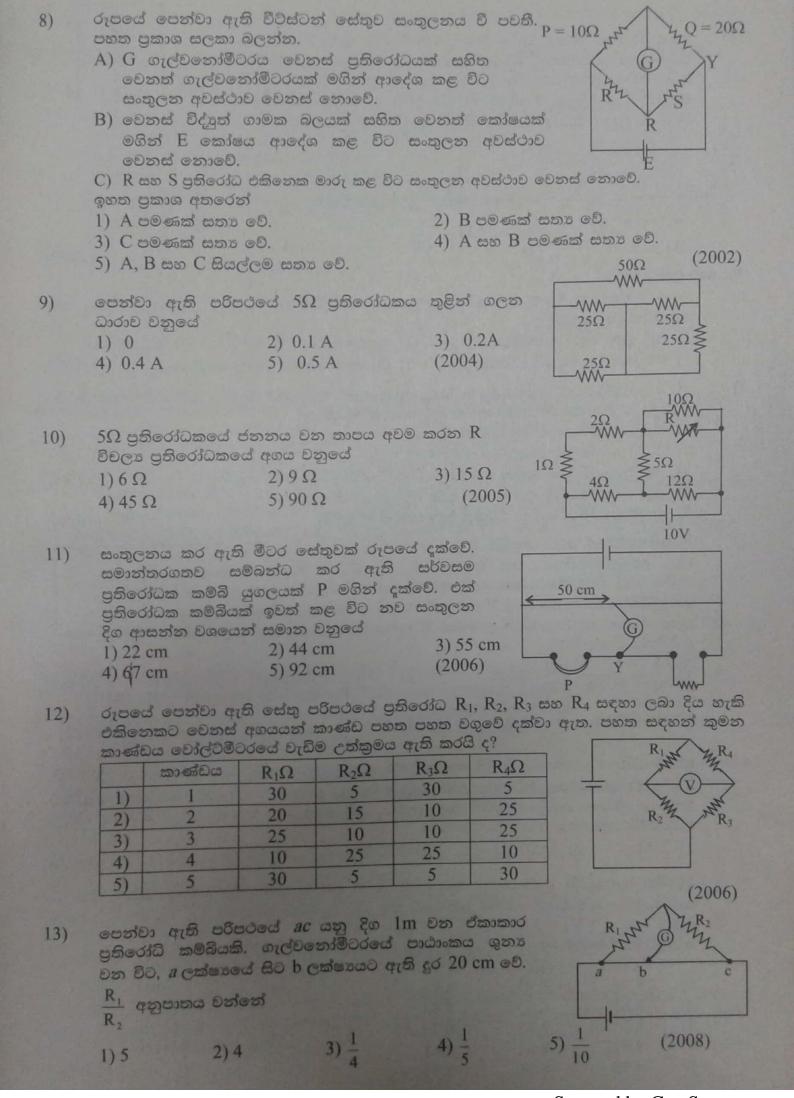
(2015-43)

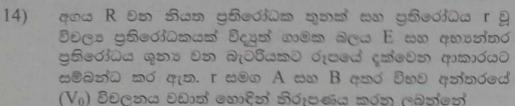
# වීට්ස්ටන් සේතු හා මීටර් සේතු

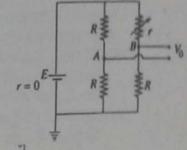
- දී ඇති පරිපථයේ X සහ Y අතර සමක පුතිරෝධය වනුයේ, 1)
  - $1) 1.8\Omega$
- $2) 3.6\Omega$
- $3) 10\Omega$

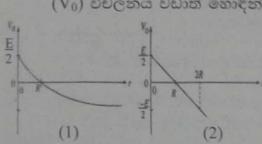
- $4) 16\Omega$
- 5)  $3\Omega$

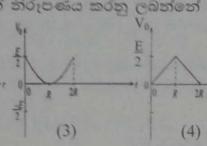


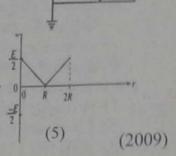


2)


දී ඇති පරිපථයේ ගැල්වනෝමීටරයෙහි ශූනා උත්කුමයක් ලබා දෙන R හි අගය වනුයේ,


- 1)  $5\Omega$
- $2) 9\Omega$
- $3) 15\Omega$

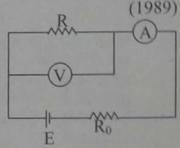

- 4)  $18\Omega$
- 5)  $36\Omega$
- (1986)







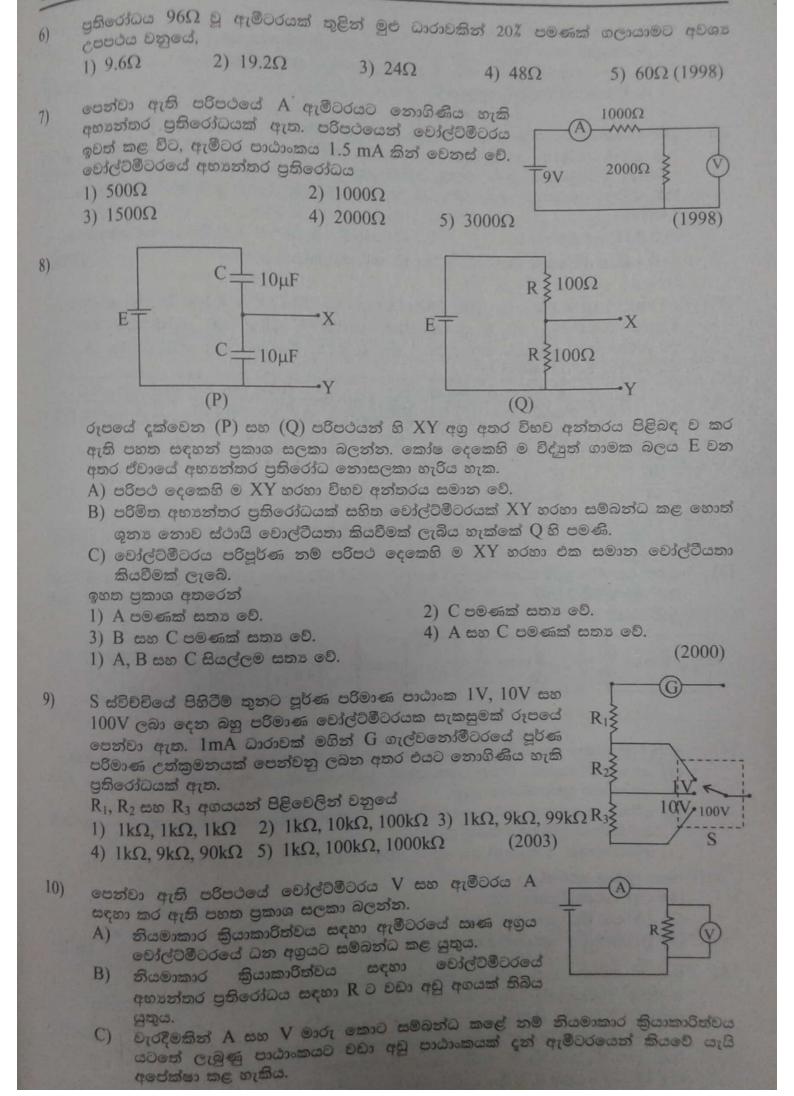





## 05 සල දඟර මීටර

- 1) පහත දක්වෙන මිනුම් උපකරණ අතුරෙන් චෝල්ටියතාව මැනීම සඳහා පාවිච්චි කළ නොහැක්කේ කුමක්ද?
  - 1) සල දඟර ගැල්වනෝමීටරය
- 2) විභවමානය
- 3) විද්යුත්ධරය
- 4) ස්වර්ණ පතු විද්යුත් දර්ශකය 5) කැතෝඩ කිරණ දෝලනේකයෙ
- (1989)
- ගැල්වනෝමීටරයක් නොසැලෙන ධාරා පුභවයකට සන්ධිකර ඇත. මෙම ගැල්වනෝමීටරය 2) හරහා උප පථයක් සම්බන්ධ කරන ලදී. මෙසේ කරන ලද,
  - 1) ගැල්වනෝමීටරයට අඩු පුතිරෝධයක් ඇත.
  - 2) ගැල්වනෝමීටරයට අඩු සංවේදිතාවක් ඇත.
  - 3) ගැල්වනෝමීටරය හරහා පෙරට වඩා වැඩි වෝල්ටීයතාවක් ඇත.
  - 4) ගැල්වනෝමීටරය තුල පෙරට වඩා අඩු ධාරාවක් ඇත.
  - 5) ගැල්වනෝමීටරයේ පාඨාංකය මුල් අගයේ ම පවතී.
- R පුතිරෝධයේ අගය සෙවීම සඳහා අභාන්තර පුතිරෝධය  $R_{
  m V}$ 3) වන චෝල්ට්මීටරයක් සහ අභානේතර පුතිරෝධය  $R_{
  m A}$  වන ඇමීටරයක් සම්බන්ධ කොට ඇති අන්දම රූපයේ පෙන්වා ඇත. වෝල්ට්මීටරයේ පාඨාංකය V හා ඇමීටරයේ දක්වෙන ධාරාවේ අගය / අතර අනුපාතයෙන් ලැබෙන R' පුතිරෝධය, R හා සමග සම්බන්ධ වී ඇත්තේ,




- 2)  $\frac{1}{R} = \frac{1}{R} \frac{1}{R}$  මගිනි. 3)  $\frac{1}{R} = \frac{1}{R} + \frac{1}{R}$  මගිනි.

4) 
$$R' = R + R_v + R_\Lambda$$
 මගිනි.

- 5)  $R' = \frac{R}{R} + R_{\Lambda}$  මගිනි.
- (1992)
- පූර්ණ පරිමාණ උත්කුමය  $1 \, \mathrm{mA}$  පාඨාංකයක් දෙන ගැල්වනෝමීටරයක පුතිරෝධය  $75\Omega$  වේ. 4) 0.0751Ω පුතිරෝධකයක් සුදුසු ආකාරයට සම්බන්ධ කිරීමෙන් 1A දක්වා ධාරාවක් මැනීමට මෙම ගැල්වනෝමීටරය පාවිච්චි කළ හැකිය. මේ ආකාරයට සාදන ලද ඇමීටරයේ සඵල පුතිරෝධයෙහි අගය ආසන්න වශයෙන්
  - 1) 75Ω
- 2)  $75.075\Omega$
- 3)  $0.075\Omega$
- 4)  $69.925\Omega$  5)  $0.75\Omega$  (1995)
- නියමිත ආකාරයට කුමාංකණය කර ඇති A, B සහ C නම් වෝල්ට්මීටර තුනක් එක්තරා 5) කෝෂයක් හරහා වෙන් චෙන්ව සම්බන්ධ කළ විට ලැබෙන පාඨාංක  $V_A,\,V_B$  සහ  $V_C$  පහත  $V_{\rm C} = 8.75 \rm V$  $V_{\rm B} = 8.85 \rm V$  $V_A = 8.95V$ දක්වා ඇත. ්හා එකවර සම්බන්ධ කල විට ඒවාහි පාඨාංක විය හැක්කේ.

| The second second | 0000 0000        |          | The state of the s |
|-------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | $V_{\Lambda}(V)$ | $V_B(V)$ | $V_{C}(V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1)                | 8.95             | 8.95     | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)                | 8.85             | 8.85     | 8.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3)                | 8.75             | 8.75     | 8.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4)                | 8.61             | 8.61     | 8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(1996)



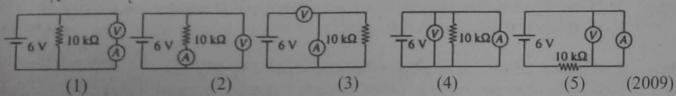
ඉහත පුකාශ අතරෙන්

1) A පමණක් සතා වේ.

- 2) A සහ B පමණක් සතා වේ.
- 3) B සහ C පමණක් සතා වේ.
- 4) A සහ C පමණක් සතා වේ.
- 1) A, B සහ C සියල්ලම සතා වේ.

- (2004)
- $200~\Omega$  අභාත්තර පුතිරෝධයක් සහිත ගැල්වතෝමීටරයක් තුළින්  $5~\mathrm{mA}$  ධාරාවක් යැවු විට 11) එය පූර්ණ පරිමාණ උත්කුමයක් ඇති කරයි. මෙම ගැල්වනෝමීටරය 10A සඳහා පූර්ණ පරිමාණ උත්කුමයක් ලබා දෙන ඇමීටරයක් ලෙස භාවිත කිරීම සඳහා අවශා බාහිර පුතිරෝධයේ ආසන්න අගය සහ එය ගැල්වනෝමීටරය සමඟ සම්බන්ධ කළයුතු ආකාරය
  - 1) 0.2 Ω, ශේණිගතව ය.
- 2)  $0.2~\Omega$ , සමාන්තරගතව ය.
- 3) 2.0 Ω, සමාන්තරගතව ය

- 3) 0.1 Ω, ශේණිගතව ය.
- $5)~0.1~\Omega$ . සමාන්තරගතව ය.


(2008)

අභාන්තර පුතිරෝධ පිළිවෙලින්  $15000~\Omega$  සහ  $13500~\Omega$  වන A සහ B නම් වෝල්ට්මීටර 12) දෙකක් වි.ගා.බලය 10 V වූ පරිපූර්ණ බැටරියක් සමඟ (a) ශ්‍රේණිගතව සහ (b) සමාන්තරගතව සම්බන්ධ කර ඇත. A සහ B මගින් කියවනු ලබන චෝල්ටීයතා නිවැරදිව දක්වන්නේ කවරක් මගින් ද?

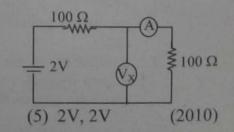
|    | (a) A සහ B ශේණිගත විට |                 | (b) A සහ B සමාන්තරගත විට |                 |
|----|-----------------------|-----------------|--------------------------|-----------------|
|    |                       |                 |                          |                 |
|    | A හි කියවීම (V)       | B හි කියවීම (V) | A හි කියවීම (V)          | B හි කියවීම (V) |
| 1) | 10                    | 10              | 10                       | 10              |
| 2) | 1                     | 9               | 10                       | 10              |
| 3) | 10                    | 10              | 9                        | 10              |
| 4) | 9                     | 10              | 1                        | 9               |
| 5) | 1                     | 9               | 9                        | 10              |

(2008)

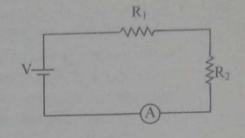
පහත පෙන්වා ඇති පරිපථවල $oldsymbol{(A)}$  සහ $oldsymbol{(V)}$  මගින් නිරූපණය වන්නේ පිළිවෙළින් ඇමීටරයක් 13) සහ වෝල්ට්මීටරයකි. හානි වීමේ වැඩි ම අවදානමක් ඇත්තේ කුමන සැකැස්මේ ඇති ඇමීටරයට ද?



- චෝල්ට්මීටරයක් සහ ඇමීටරයක් පිළිබඳව කර ඇති පහත සඳහන් පුකාහ සලකා බලන්න. 14)
  - (1) චෝල්ට්මීටරයකට විශාල අභාන්තර පුතිරෝධයක් ඇති අතර ඇමීටරයකට කුඩා අභාවේතර පුතිරෝධයක් ඇත.
  - (2) පරිපථ කොටසක් හරහා චෝල්ටියතාව මැතීම සඳහා චෝල්ට්මීටරයක් එම කොටසට ශේණීගතව සම්බන්ධ කරනු ලැබේ.
  - (3) ඇම්ටරයකින් මනින්නේ එය හරහා ඒකක කාලයකදී ගලන ආරෝපණ පුමාණයයි.


ඉහත පුකාශ අතරින්,

(1) (A) පමණක් සත්‍ර වේ.


- (2) (C) පමණක් සතා වේ.
- (3) (A) සහ (B) පමණක් සතා වේ.
- (4) (A) හා (C) පමණක් සතා වේ.
- (5) (B) සහ (C) පමණක් සතා වේ.

(2010)

රූපයේ පෙන්වා ඇති පරිපථය සාදා ඇත්තේ පරිපූර්ණ 15) සංරචක භාවිතයෙනි. A ඇමීටරයක් වන අතර  $V_X$ වෝල්ට් මීටරයකි. ශිෂායෙකු වැරදීමකින් A ඇමීටරය Vy නම් පරිපූර්ණ චෝල්ට්මීටරයක් මගින් පුතිස්ථාපනය කළහොත්  $V_X$  සහ  $V_Y$  හි කියවීම පිළිවෙළින් වන්නේ, (1) 1V, 1V (2) 1V, 0 (3) 2V, 0 (4) 0, 1V



පෙන්වා ඇති පරිපථයෙහි V චෝල්ටීයතාවක් සහිත බැටරියෙහි සහ A ඇමීටරයෙහි ඇත්තේ නොගිණිය හැකි අභාන්තර පුතිරෝධයකි. එක්තරා චෝල්ට්මීටරයක් වෙන වෙනම R1 සහ R2 හරහා සම්බන්ධ කළ විට A ඇමීටරයේ පාඨාංකයේ අනාවරණය කළ හැකි වෙනස්වීමක් ඇති වන්නේ වෝල්ට්මීටරය  $R_2$  හරහා සම්බන්ධ කළ විට පමණි. පහත සඳහන් පුකාශ සලකා බලන්න.



 $(A) R_1 > R_2$ 

6)

(B) පුශ්නයේ සදහන් කර ඇති ඇමීටර පාඨාංකයේ 'වෙනස්වීම' සතා වශයෙන්ම 'වැඩිවීම'කි.

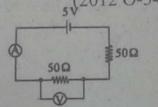
(C) R<sub>1</sub> හි අගය වෝල්ට්මීටරයේ අභාන්තර පුතිරෝධයට වඩා ඉතා අඩුය.

ඉහත පුකාශ අතුරින් 1) (A) පමණක් සතා වේ.

2) (B) පමණක් සතා වේ.

3) (C) පමණක් සතා වේ.

4) (B) සහ (C) පමණක් සතා වේ.


5) (A), (B) සහ (C) සියල්ලම සතා වේ.

(2011 O)

 $0-20~{
m V}$  වෝල්ට් මීටරයක්  $0-20~{
m mA}$  ඇමීටරයක් බවට පත් කර ගැනීමට ශිෂායෙකුට 17) අවශාව ඇත. ඔහු චෝල්ට් මීටරයේ අභාන්තර පුතිරෝධය අනන්ත යැයි උපකල්පනය කර සම්බන්ධ කළ යුතු පුතිරෝධකයේ අගය ගණනය කළේ ය. චෝල්ට්මීටරයට සතා වශයෙන්ම  $10~{
m k}\Omega$  අභාාන්තර පුතිරෝධයක් ඇත්නම්, විකරණය කරන ලද ඇමීටරය 20 mA දක්වන විට, සතා ධාරාව කුමක් වනු ඇත් ද? 1) 1.81 mA 2) 2 mA 3) 20 mA 4) 22 mA

5 (2012 O-54)

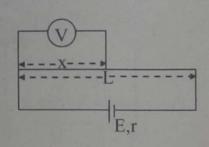
දී ඇති පරිපථයෙහි, V චෝල්ට්මීටරය සහ A ඇමීටරය 18) වැරදීමකින් එකිනෙකට මාරු වී ඇතොත්, ඇමීටරයෙහි සහ චෝල්ට්මීටරයෙහි කියවීම පිළිවෙළින් විය හැක්කේ, (A සහ V පරිපූර්ණ උපකරණ බව සලකන්න.)



1) 0 A, 0 V

2) 0 A, 5 V

3) 0 A, 2.5 V


(2015-20)

4) 0.1 A, 0 V

5) 0.05 A, 2.5 V

06 විතව මානය

දිග L සහ පුතිරෝධය R වූ ඒකාකාර කම්බියක් අභාන්තර 1) පතිරෝධය r සහ විද්යුත් ගාමක බලය E වූ බැටරියක් හරහා සම්බන්ධ කොට ඇත. ඉතා විශාල අභාන්තර පුතිරෝධයක් ඇති චෝල්ට්මීටරයක් කම්බියේ එක් කෙළවරකට සහ එම කෙළවරේ සිට x දුරකින් පිහිටි ලක්ෂායකට රූපයේ දුක්වෙන ආකාරයට සම්බන්ධ කොට ඇත. චෝල්ට්මීටරයේ පාඨාංකය V සහ x දුර අතර සම්බන්ධතාව වනුයේ,



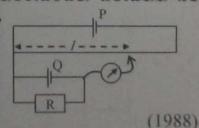
1)  $V = \frac{E}{R} x$ 

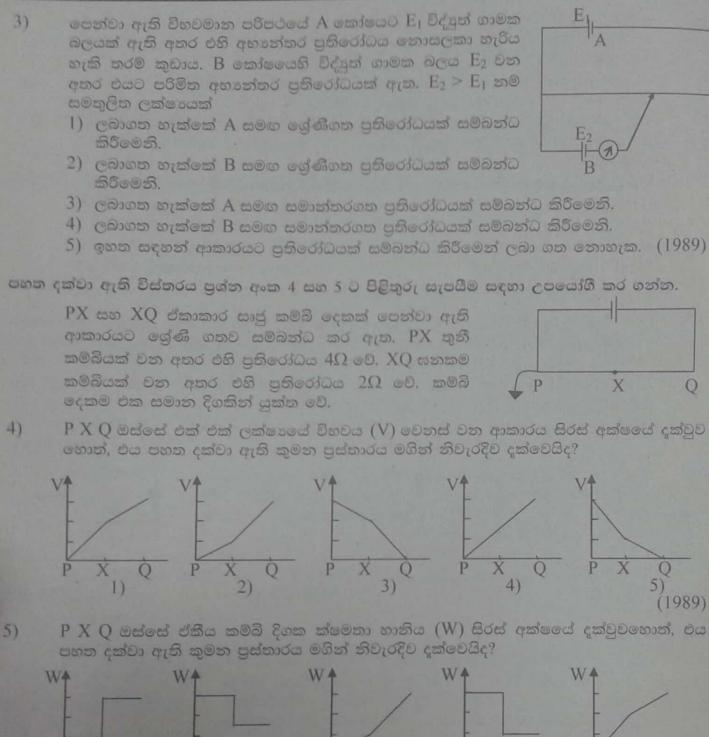
2)  $V = \frac{E}{L}x$  3)  $V = \frac{E}{(R+r)}x$ 

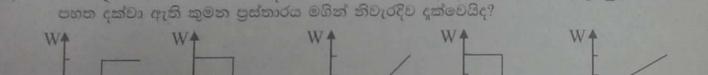
4)  $V = \frac{E}{(R+r)} \frac{x}{L}$  5)  $V = \frac{E}{(R+r)} \frac{R}{L} x$ 

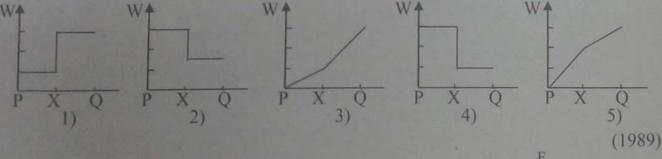
(1987)

දෙන ලද විභවමාන පරිපථයෙහි කම්බියේ සංතුලන දිග /, R පුතිරෝධයෙන් ස්වායන්ත බව 2) නිරීක ණය කරන ලදී. මීට හේතුව ලෙස පහදා දීම විය හැක්කේ,

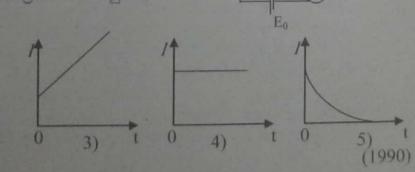

1) P කෝෂයේ අභාන්තර පුතිරෝධය ඉතා විශාල වීමය.

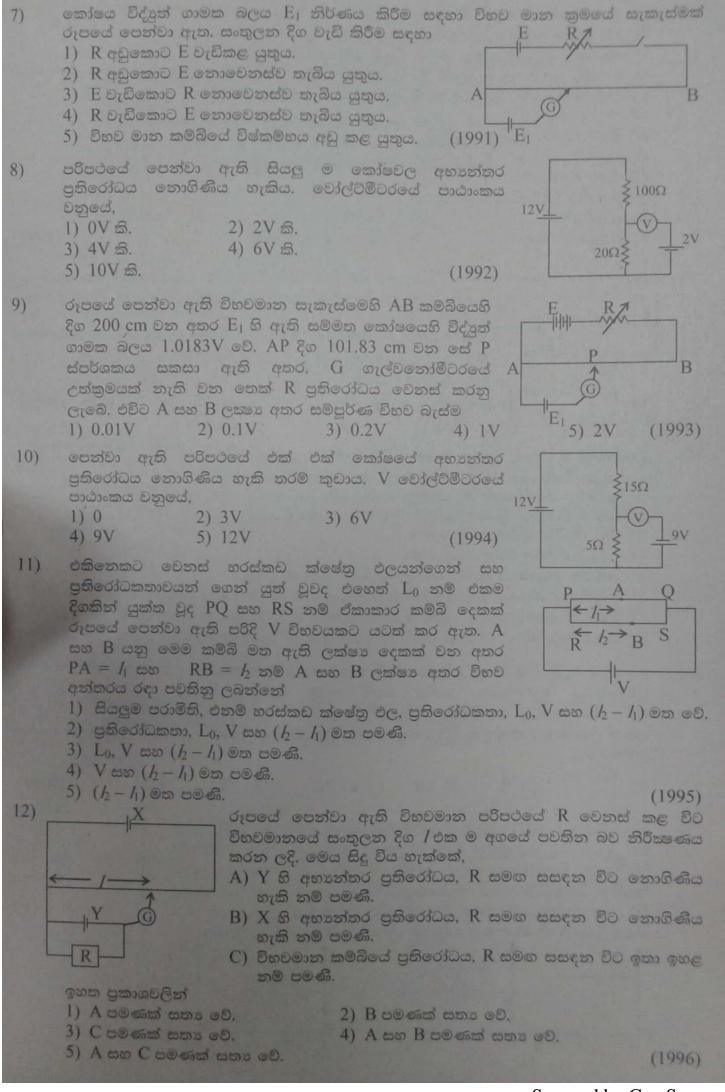

2) P කෝෂයේ අභාන්තර පුතිරෝධය ශූනා වීම.

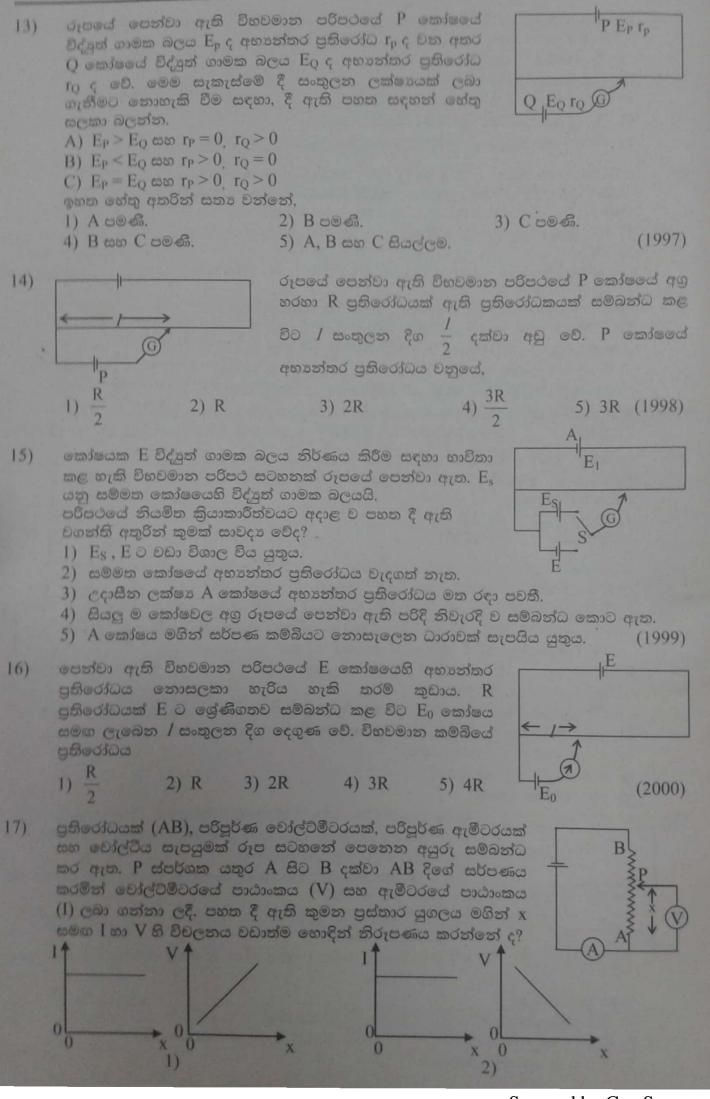

3) Q කෝෂයේ අභාන්තර පුතිරෝධය ඉතා විශාල වීමය.

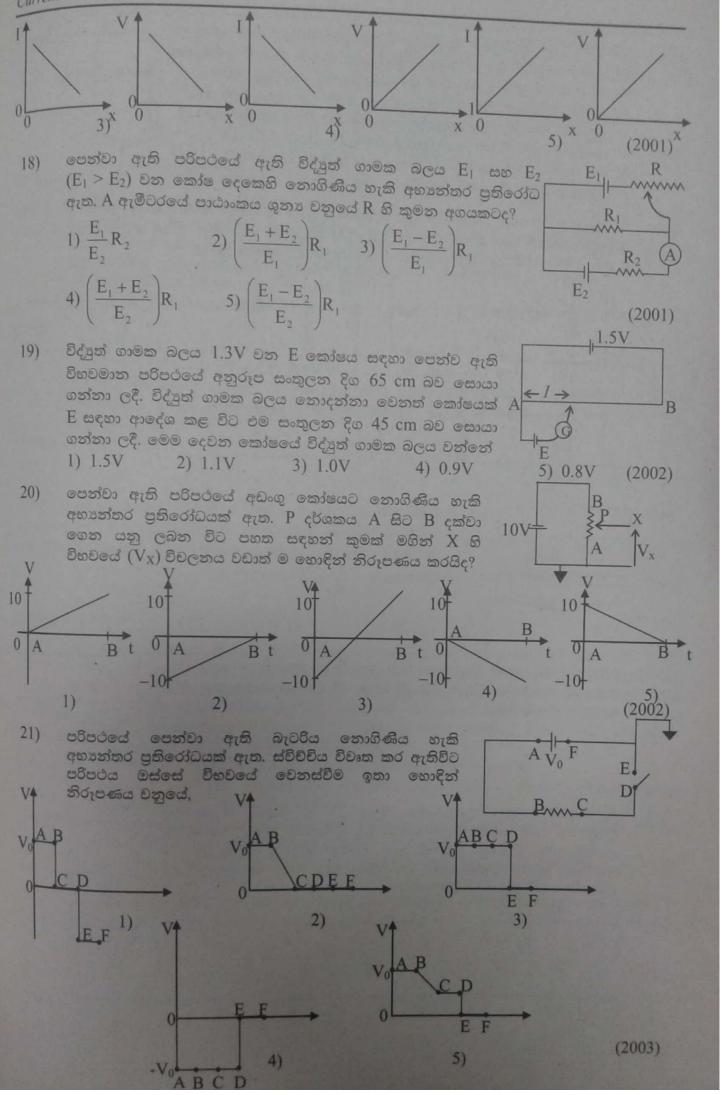

4) Q කෝෂයේ අභාන්තර පුතිරෝධය ශූනා වීම.

5) විභවමාන කම්බියේ පුතිරෝධය ඉතා විශාල වීමය.

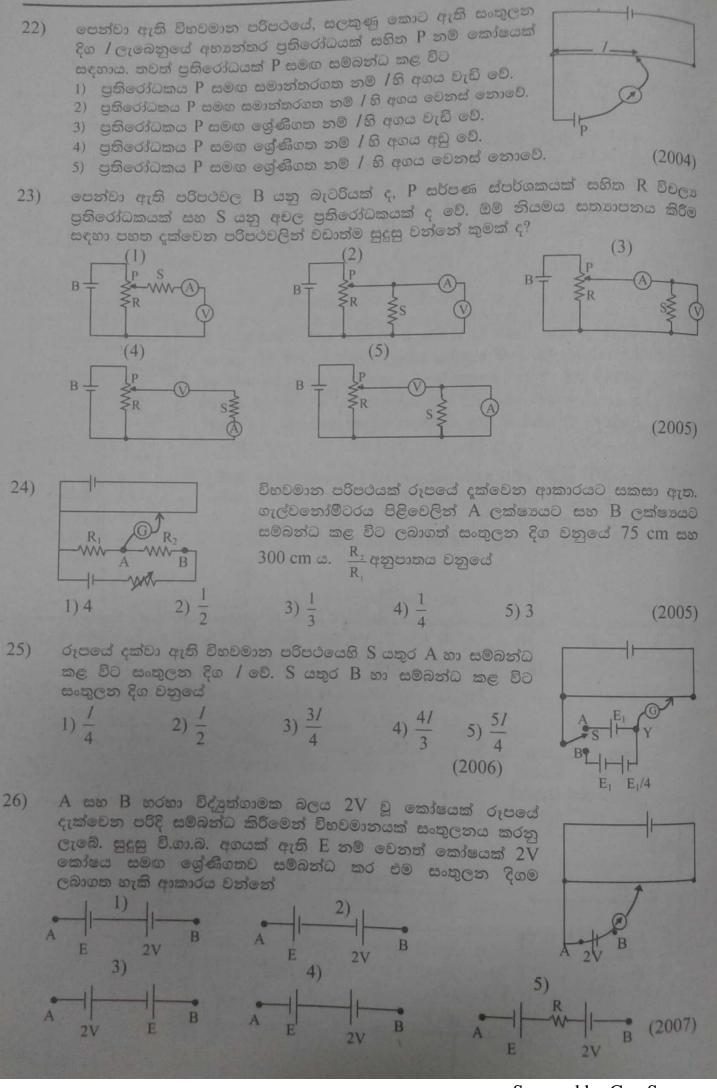


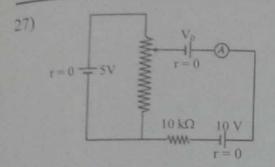




පෙන්වා ඇති විභවමාන පරිපථයේ විද්යුත් ගාමක බලය  ${
m E}_0$ 6) නියතව පවතී නම සහ විද්යුත් ගාමක බලය E කාලය සමඟ අඩු වේ නම්, කාලය t සමඟ සංතුලන දිග / හි වෙනස්වීම ආසන්න වශයෙන් නිරූපණය කරන පුස්තාරය වනුයේ,





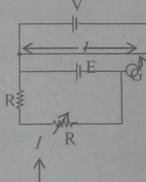



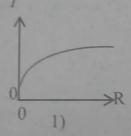


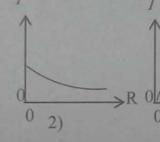

Scanned by CamScanner

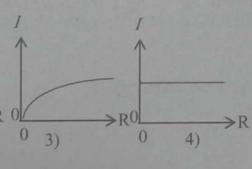


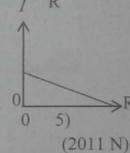
Scanned by CamScanner





රූපයේ පෙන්වා ඇති පරිපථයෙහි A මැද -බින්දු ඇමීටරයට, දිශා දෙකෙන් ඕනෑම දිශාවකට ධාරා දක්වීමට හැකියාවක් ඇත්තේ  $V_0$ 


- 1) 1 V වුවහොත් ය. 2) 2 V වුවහොත් ය.
- 3) 4 V වුවහොත් ය. 4) 5 V වුවහොත් ය.
- 5) 6 V වුවහොත් ය. (2009)
- 28) විභවමානයක සංවේදිතාව වැඩි කළ හැක්කේ,
  - (1) කම්බිය හරහා සම්බන්ධ කර ඇති කෝසේේ වී. ගා, බ වැඩි කිරීමෙනි.
  - (2) කම්බියේ පුතිරෝධතාව අඩු කිරීම මගිනි.
  - (3) කම්බිය සමග ලෝණිගතව පුතිරෝධයක් සමබන්ධ කිරීම මගිනි.
  - (4) කම්බියේ විෂ්කම්භය අඩු කිරීම මගිනි.
  - (5) කම්බියේ උෂ්ණත්වය කාමර උෂ්ණත්වයේ පවත්වා ගැනීම මගිනි.


(2010)


29) පෙන්වා ඇති පරිපථයේ V<sub>0</sub> මගින් දක්වා ඇත්තේ නොගිණිය හැකි අභපන්තර පතිරෝධයක් සහිත බැටරියක වෝල්ටීයතාව වන අතර E මගින් නිරූපණය වන්නේ පරිමිත අභාන්තර පතිරෝධයක් සහිත කෝයෙකි. R සමග සංතුලන දිග / හි වෙනස්වීම වඩාත් භෞදින් නිරූපණය කරන්නේ,











(30)

(X) නම් කෝෂයක වී.ගා.බ. මැනීම සඳහා විභවමානයක් භාවිත කරමින් සිටින විට දී එහි කම්බියෙහි දෙකෙළවරට සම්බන්ධ කර ඇති 2V ඇකියුමිලේටරයෙහි චෝල්ටීයතාව අඩු වෙමින් පවතින බව සොයා ගන්නා ලදී. ඇකියුමිලේටරයේ චෝල්ටීයතාවයෙහි අඩු වීමක් සිදු වුව ද විභවමාන කම්බියේ නියත සංතුලන ලක්ෂායක් ලබා ගත හැකි බව ශිෂායකු විසින් නිරීක්ෂණය කරන ලදී. මෙම නිරීක්ෂණය සඳහා ශිෂායා විසින් දෙන ලද පහත සඳහන් පැහැදිලි කිරීම් වලින් කුමක් පිළිගත හැකිද?

- 1) සංතුලන දිග ඇකියුම්ලේටරයේ චෝල්ටීයතාව මත රඳා නොපවති.
- 2) විභවමාන කම්බියේ දෙකෙළවර හා සම්බන්ධ දෝෂයන්ගේ වෙනස්කම්, නියත සංතුලන ලක්ෂාක් ලැබීමට හේතුව විය හැකිය.
- 3) ඇකියුම්ලේටරයේ චෝලටීයතාව අඩු චෙමින් පැවතිය ද (X) කෝෂය මගින් කම්බිය හරහා නියත විභව අනුකුමණයක් පවත්වා ගෙන ඇත.
- 4) ඇකියුම්ලේටරයේ චෝල්ටීයතාව අඩු වීමේ බලපෑම, කම්බියේ උෂ්ණත්වය වැඩි වීම මගින් ශූනා කර ඇත.
- 5) පරීක්ෂණය කර ගෙන යන අතරතුර දී (X) කෝෂයේ චෝල්ටීයතාව ද පහත වැටෙමින් පැවතෙන්නට ඇත. (2015-19)

```
1) ඕම් නියමය හා පුතිරෝධ පද්ධති
```

```
(07) 2 (08) 3 (09) 3
(01)
        (02) 3
                 (03) 2
                                                                              (10) 3
                          (04) 1
                                   (05) 1
                                            (06) 5
        (12)
                          (14) 2
                                                                     (19) 4
                                                                              (20) 4
(11)
                 (13)
                                                             (18) 3
                                   (15)
                                                    (17)
                                            (16)
                                                                              (30) 5
(21)
        (22)
                 (23)
                          (24) 5
                                                             (28) 2
                                                                     (29) 1
                                   (25)
                                        4
                                            (26) 4
                                                    (27)
        (32)
                                                             (38) 2 (39) 4
                                                                              (40) 2
(31)
                 (33)
                          (34) 4
                                   (35)
                                                 2
                                                    (37)
                                                         4
                                            (36)
(41)
        (42)
                                                                              (50) 5
     4
              3 (43)
                                                                  3 (49) 5
                         (44)
                               1
                                   (45)
                                            (46)
                                                 4
                                                    (47)
                                                             (48)
        (52)
                                                                              (60) 1
(51)
              4 (53)
                                                             (58) 1 (59) 1
                          (54) 2
                                   (55)
                                            (56)
                                                 5
                                                    (57) 4
                                                                              (70) 5
                                                             (68) 2 (69) 3
(61)
     4 (62)
              3 (63)
                       all (64) 3
                                                    (67) 2
                                   (65)
                                        1
                                            (66)
                                                 3
(71)
      2 (72)
                                                                              (80) 4
                (73)
                       3
                          (74) 4
                                   (75) 2
                                                 2
                                                             (78) 3 (79) 3
                                            (76)
                                                    (77)
      4 (82)
(81)
              4
```

## 2) විද්පුත් කමෙතාව හා තාපන එලය

```
(09) 3 (10) 4
(01)
        (02)
                 (03) 2
                                                  (07)
                          (04) 3
                                  (05) 5
                                           (06) 3
                                                        4
                                                           (08) 4
                                                                   (19) 4 (20) 5
(11)
        (12)
                 (13)
                                                           (18) 3
                          (14) 4
                                  (15) 4
                                           (16)
                                                4 (17)
                          (24) 5
                                                                   (29) 5 (30) 4
                                  (25) 2
                                                5 (27)
(21)
        (22)
              4
                 (23)
                                           (26)
                                                           (28)
                                                          (38) 5
                                                                   (39) 4 (40) 5
(31)
        (32)
              3
                (33)
                          (34) 2
                                  (35) 3
                                          (36) 3,5(37)
                                                                   (49) 4 (50) 4
(41)
        (42)
                (43)
                          (44) 5
                                  (45)
                                       2
                                          (46)
                                               2 (47)
                                                           (48) 4
(51)
```

## 3) කර්චොප් නියම හා කෝෂ පද්ධති

```
(10) 5
                                                     4 (08)
                                                             2 (09) 3
(01)
        (02) 5
                        (04)
                             1 (05) 4
                                        (06)4,2(07)
                (03) 3
                                               (17)
                                                               (19) 1
                                                                        (20)
                        (14)
                                        (16) 3
                                                     2
                                                       (18)
                                                             5
(11)
     4 (12)
                (13)
                             3
                                (15)
                                     3
                     2
     3 (22)
                (23)
                        (24)
                             2
                               (25)
                                     4
                                        (26)
                                             2
                                               (27)
                                                     4
                                                       (28)
                                                             5 (29)
                                                                        (30)
(21)
                                                                        (40) 2
                                        (36) 2
                                               (37) 3 (38)
                                                                (39)
    3 (32)
            4 (33) 5 (34) 5 (35) 4
(31)
            4 (43) 1 (44) 3 (45) 3
                                        (46) 2 (47)
                                                     4 (48)
                                                               49)
    4 (42)
(41)
```

## 4) වීට්ස්ටන් සේතු හා මීටර් සේතු

```
(01) 2 (02) 4 (03) 3 (04) 3 (05) 5 (06) 3 (07) 5 (08) 4 (09) 1 (10) 5 (11) 4 (12) 1 (13) 3 (14) 1
```

## 5) සළ දඟර මීටර

```
(01) 3 (02) 2,4 (03) 3 (04) 3 (05) 4 (06) 3 (07) 4 (08) 5 (09) 4 (10) 4 (11) 5 (12) 2 (13) 4 (14) 4 (15) 5 (16) 4 (17) 4 (18) 2
```

## 6) විභව මානය

```
(01) 5 (02) 4 (03) 4 (04) 1 (05) 2 (06) 3 (07) 4 (08) 3 (09) 5 (10) 3 (11) 3 (12) 1 (13) 4 (14) 2 (15) 1 (16) 2 (17) 1 (18) 5 (19) 4 (20) 4 (21) 3 (22) 5 (23) 3 (24) 5 (25) 5 (26) 2 (27) 5 (28) 3 (29) 1 (30) 5
```