A කොටස - වාූහගත රචනා

- ❖ පුශ්න 4ටම පිළිතුරු සපයන්න. (g = 10N kg⁻¹)
- 01. රූපයේ පෙන්වා ඇත්තේ අභාගන්තර විෂ්කම්බය ${f d}_1$ ද, බාහිර විෂ්කම්බය ${f d}_2$ හා උස ${f h}$ ද වන ඒකාකාර ලෝහ බවයක කොටසකි. (මෙහි ${f d}_2 < 10~{
 m cm}$ වේ.)
 - a) මෙහි අභාපත්තර හා බාහිර විෂ්කම්බ වල මිනුම් ලබාගැනීම සඳහා භාවිතා කළ යුතු මිනුම් උපකරණ කුමක්ද?
 - b) එම උපකරණයේ දළ රූප සටහනක් ඇඳ කොටස් නම් කරන්න.

d, මැනීම සඳහා :-

Læ8 papers grp

c) \mathbf{d}_1 හා \mathbf{d}_2 මැන ගැනීම සඳහා උපකරණයේ භාවිතා කරන කොටස් ලියා දක්වන්න.

 ${
m d}$) වස්තුවේ පරිමාව සඳහා පුකාශනයක් ${
m d}_1, {
m d}_2$ හා ${
m h}$ ඇසුරින් ලබාගන්න.

e) ශිෂාාවක් මෙහි ලබාගත් මිනුම් පහත දැක්වේ.

d, මැනීම සඳහා :-

 $d_1 = 4.42 \text{ cm}$, $d_2 = 7.74 \text{ cm}$, h = 12.6 cm

වස්තුවේ පරිමාව ආසන්න පූර්ණ සංඛාාවේ උපගුණකාරයක් ලෙස \mathbf{m}^3 වලින් සොයන්න. ($\pi=3$, $7.74^2=60$, $4.42^2=20$, $3.87^2=15$, $2.21^2=5$ ලෙස ගන්න)

f) වස්තුව සාදා ඇති ලෝහ දුවායේ සණත්වය $8500~{
m kg}~{
m m}^{-3}$ නම් එහි ස්කන්ධය ගණනය කරන්න.

g) මෙම ලෝහ කොටස උණුකර ස්කන්ධ හානියක් සිදු නොවන සේ අභාගන්තර විෂ්කම්භයට සමාන ඒකාකාර ලෝහ දණ්ඩක් සාදාගත් විට එහි දිග ගණනය කරන්න.

02.		යෙකුට පාසල් පරීක්ෂණාගාරයේ දී මිශුණ කුමය භාවිත කර, අයිස් වල විලයනයේ විශිෂ්ට ගුප්ත ය නිර්ණය කිරීමට අවශාව ඇත. ජලය අඩංගු කැලරිමීටරයක්, අයිස් සහ පරීක්ෂණයට අවශා
		තකුත් දෑ ලබා දී ඇත.
	a)	කැලරිමීටරය තුළ ඇති ජලයේ ආරම්භක උෂ්ණත්වය කාමරයේ උෂ්ණත්වයට වඩා පහළ, ඉහළ හෝ සමාන විය යුතු ද?
	b)	ඉහත (a) හි ඔබගේ පිළිතුර සඳහා හේතුව දෙන්න.
	c)	කැලරි මීටරය තුළට අයිස් එකතු කිරීමේ දී ශිෂාසයා විසින් අනුගමනය කල යුතු පූර්චෝපායන් තුනක් දෙන්න.
	d)	අයිස් සහ ජලය මිශුණය මන්ථනය කිරීමේ දී අයිස් කැබලි ජලය මත පා නොවිය යුතුය. මෙයට හේතුව කුමක්ද?
	e)	අවසාන උෂ්ණත්වය ලබා ගැනීමේදී ශිෂාපයා අනුගමනය කල යුතු පරීක්ෂණාත්මක කිුියාපිළිවෙල කුමක්ද?
	f)	පරීකෂණයේදී ශිෂාපයා පහත සඳහන් දත්ත හා තොරතුරු ලබාගත්තේ ය.
		කැලරි මීටරය සහ මන්ථයේ තාප ධාරිතාව = $40~\mathrm{JK^{-1}}$ කැලරි මීටරය තුළ වූ ජලයේ ආරම්භක ස්කන්ධය = $100~\mathrm{g}$ ජලයේ ආරම්භක උෂ්ණත්වය = $35^{0}\mathrm{C}$
		ජලයේ අවසාන උෂ්ණත්වය = 25°C
		දියවූ අයිස් වල ස්කන්ධය = 11 g
		අයිස් වල වියලනයේ විශිෂ්ට ගුප්ත තාපය ගණනය කරන්න.
		(ජලයේ විශිෂ්ට තාප ධාරිතාව $=4 \times 10^3~\mathrm{Jkg^{-1}~K^{-1}}$)
	g)	කාමර උෂ්ණත්වය එම අගයම වූ වෙනත් දිනයකදී ශිෂායා එම උපකරණයම සහ එම ජල පුමාණයම භාවිතා කොට පරීකෂණය නැවත සිදු කලේය. නමුත් අවසාන උෂ්ණත්වය 25° C ලබා ගැනීමේදී කැලරි මීටරයේ පෘෂ්ඨය මත තුෂාර සෑදී ඇති බව ශිෂායා නිරීකෂණය කළේය. දිය වූ අයිස් ස්කන්ධය $18g$ වූ අතර කැලරි මීටරය මත සෑදුණු තුෂාර වල ස්කන්ධය $0.86g$ විය. තුෂාර
		අංකය $25^{\circ}\mathrm{C}$ බව ද, ජල වාෂ්ප ඝනීභවයේදී මුදාහරිනු ලැබූ තාපය සම්පූර්ණයෙන්ම කැලරි මීටරය

මඟින් අවශෝෂණය කරන ලද බවද උපකල්පනය කරමින් මෙම උෂ්ණත්වයේදී ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය ගණනය කරන්න. 03. ලේසර් කිරණ, විවිධ කෂ්තු ගණනාවක ඉතා පුයෝජනවත් ලෙස යොදා ගැනේ. ලේසර් කි්රණ වල ගුණ දෙකක් ලියන්න. ලේසර් කිරණ පුායෝගිකව යොදා ගන්නා අවස්ථා දෙකක් සඳහන් කරන්න. ලේසර් කිරණ භාවිතයෙන් ආලෝක වර්තනය පිළිබඳව හැදෑරීමට යොදාගත් පරීක ෙණාත්මක සැකැස්මක් රුපයේ දැක්වේ. කදම්බය. ABC යනු වර්තන අංකය $\sqrt{2}$ වූ ප්ලාස්ටික් වලින් සාදා ඇති සෘජුකෝණී පිුස්මයකි. AB පෘෂ්ඨයට ලම්භකව ලේසර් කි්රණයක් පතනය වේ. පිුස්මය ඇති විට ආලෝක ලපය ති්රය මත Y ස්ථානයේදී සෑදෙන අතර පිස්මය ඉවත් කළ විට ආලෝක ලපය තිරය මත X නම් ස්ථානයේ සෑදේ. b) i. දී ඇති කිරණයේ ගමන් මග සම්පූර්ණ කරන්න. ii. තිරය මත X හා Y පිහිටීම ලකුණු කරන්න. c) x හා y අතර දුර s නම් අපගමන කෝණය d සඳහා පුකාශනයක් r හා s ඇසුරෙන් ලබා ගන්න. d) p ලසුමාය වටා පිස්මය සෙමින් දසුෂිණාවර්තව භුමනය කිරීමෙන් එක්තරා අවස්ථාවකදී ආලෝක ලපය නොපෙනී යයි. i. එසේ වීමට හේතුව කුමක්ද?

ii.	d (i) හි සඳහන් ආලෝක ලපය නොපෙනී යන අවස්ථාවේදී ලේසර් කිරණය AC පෘෂ්ඨය මත
	පතිත විය යුතු කෝණය සොයන්න.
	••••••
iii.	එවිට කිරණය AB පෘෂ්ඨයෙන් වර්තනය වන කෝණය කුමක්ද?

iv.	ඒ සඳහා පිුස්මය හුමණය කළ යුතු කෝණය $lpha$ නම්, $lpha$ හා AB පෘෂ්ඨයේ වර්තන කෝණය
	අතර සම්බන්ධය දැක්වෙන පුකාශනයක් ලියන්න. (සුළු කිරීම අවශා නැත.)

04. විභව මා	නයක් කුමාංකනය කිරීම සඳහා යොදා ගෙන ඇති පරිපථ සටහනක් රූපයේ දක්වා ඇත.
	I E
	1 C
	A\ B
	$X \longrightarrow V$
edeako o	'E ₀ '
	පතුර C ලක්ෂාය ස්පර්ශ කල විට ගැල්වනෝ මීටරයේ උත්කුමණය ශූතා විය.
i.	A හා C අතර විභව අන්තරය $\left(V_{_{AC}} ight)$ හා x හා y අතර විභව අන්තරය $\left(V_{_{Xy}} ight)$ අතර සම්බන්ධය
	ලියන්න.
ii.	එමඟින් විභවමාන නියතය සඳහා සමීකරණයක්, ${ m E_0}$ හා l ඇසුරෙන් ලබා ගන්න.
iii.	$\mathrm{E}_{\scriptscriptstyle{0}}$ කෝෂයේ අභාාන්තර පුතිරෝධය, සංතුලන දිග සඳහා කෙසේ බලපායිද?
m - 1 - 1 -	

	විභවමාන පරීකෘණවලදී ඇතැම් අවස්ථාවල ස		
	හේතුවිය හැකි කරුණු 02ක් ලියන්න.		

v.	${ m P}$ හා ${ m Q}$ විභවමාන දෙකක් සඳහා කම්බිය දිග l පරිදි වේ.	හා විභව අන්තර	ය (v) අතර පුස්ථාරය ප
	Î ,P		
	Q Q		
	1		
		00.1	- 0-1 D O
	කෝෂයක විදාපුත්ගාමක බලය නිර්ණය කිරීම		සු වන්නේ P හා Q අප
	කුමන විභවමානයද? හේතුව පැහැදිලි කරන්න.		
-			
විත් තර්	නයෙක් තාප විදහුත් යුග්මයක විදහුත් ගාමක ර වමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති ෂායේදී ගැල්වනෝ මීටර පාඨාංකය ශූනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති	යේ අභාපන්තර රෝධය 10 Ω ද	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි
විත් තර් ලක	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර් ලක	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර් ලක	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර් ලක	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාපන්තර රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර් ලක්	වමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පහයේදී ගැල්වනෝ මීටර පාඨාංකය ශූනා විය.	යේ අභාගන්තර ද රෝධය 10 Ω ද I නිසිල් \	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය.	යේ අභාගන්තර ද රෝධය 10 Ω ද I නිසිල් \	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v
විත් තර් ලක	වමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පහයේදී ගැල්වනෝ මීටර පාඨාංකය ශූනා විය.	යේ අභාගන්තර අ රෝධය 10 Ω ද I 990 Ω P සිසිල් \	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v S රණුසුම්
විත් තර් ලක්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති පොයේදී ගැල්වනෝ මීටර පාඨාංකය ශුනා විය. I සඳහා අගයක් ලබා ගන්න. තාප විදහුත් යුග්මයේ විදහුත් ගාමක බලය ගණ	යේ අභාගන්තර අ රෝධය 10 Ω ද I 990 Ω P	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v S රිණුසුම්
විත් තර් ලක්	වෙමාන පරිපථයක් පහත දැක්වේ. E, 2V කෝෂ මේ කුඩාය. විභවමාන කම්බියේ දිග 1 m ද, පුති ෂායේදී ගැල්වනෝ මීටර පාඨාංකය ශූනා විය. I සඳහා අගයක් ලබා ගන්න. තාප විදයුත් යුග්මයේ විදයුත් ගාමක බලය ගණ	යේ අභාගන්තර ශ්රාධය 10 Ω ද I	පුතිරෝධය නොගිණිය වේ. P සිට 400mm දුරි E = 2v